Knowl. Manag. Aquat. Ecosyst.
Number 423, 2022
Topical issue on Crayfish
Article Number 9
Number of page(s) 11
Published online 25 February 2022
  • Adams DC, Otárola‐Castillo E. 2013. Geomorph: an R package for the collection and analysis of geometric morphometric shape data. Methods Ecol Evol 4: 393–399. [CrossRef] [Google Scholar]
  • Adams DC, Rohlf FJ, Slice DE. 2013. A field comes of age: geometric morphometrics in the 21st century. Hystrix 24: 7–14. [Google Scholar]
  • Albrecht H. 1983. Besiedlungsgeschichte und ursprünglich holozane verbreitung der europäischen Flusskrebse. Spixiana 6: 61–77. [Google Scholar]
  • Benzer SS, Benzer R, Gunal C. 2017. Artificial neural networks approach in morphometric analysis of crayfish (Astacus leptodactylus) in Hirfanlı Dam Lake. Biologia 72: 527–535. [Google Scholar]
  • Bertocchi S, Brusconi S, Gherardi F, Buccianti A, Scalici M. 2008. Morphometrical characterization of the Austropotamobius pallipes species complex. J Nat Hist 42: 2063–2077. [CrossRef] [Google Scholar]
  • Bök TD, Harlıoğlu MM, Deval MC. 2010. A study on the morphometric characteristics of Astacus leptodactylus inhabiting the Thrace region of Turkey. Knowl Manag Aquat Ecosyst 397: 05. [Google Scholar]
  • Buj I, Marčić Z, Čavlović K, et al. 2020. Multilocus phylogenetic analysis helps to untangle the taxonomic puzzle of chubs (genus Squalius: Cypriniformes: Actinopteri) in the Adriatic basin of Croatia and Bosnia and Herzegovina. Zool J Linnean Soc 189: 953–974. [CrossRef] [Google Scholar]
  • Cataudella R, Paolucci M, Delaunay C, Ropiquet AH, Baslamo M, Grandjean F. 2010. Genetic variability of Austropotamobius italicus in the Marches region: implications for conservation. Aquat Conserv 20: 261–268. [CrossRef] [Google Scholar]
  • Campbell NA, Atchley WR. 1981. The geometry of canonical variate analysis. Syst Biol 30: 268–280. [CrossRef] [Google Scholar]
  • Collen B, Whitton F, Dyer EE, et al. 2014. Global patterns of freshwater species diversity, threat and endemism. Glob Ecol Biogeogr 23: 40–51. [CrossRef] [PubMed] [Google Scholar]
  • Dryden IL. Package ‘shapes’: Statistical Shape Analysis. R Package Version 1.2.6. [Google Scholar]
  • Dudgeon D, Arthington AH, Gessner MO, et al. 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev Camb Philos Soc 81: 163–182. [CrossRef] [PubMed] [Google Scholar]
  • Đuretanović S, Jaklič M, Milošković A, et al. 2017. Morphometric variations among Astacus astacus populations from different regions of the Balkan Peninsula. Zoomorphology 136: 19–27. [CrossRef] [Google Scholar]
  • Edsman L, Füreder L, Gherardi F, Souty-Grosset C. 2010. Astacus astacus. In: IUCN 2010, IUCN Red List of Threatened Species. [Google Scholar]
  • Ghia D, Nardi PA, Negri A, et al. 2006. Syntopy of A. pallipes and A. italicus: genetic and morphometrical investigations. Bull Fr Pêche Piscic 380–381: 1001–1018. [CrossRef] [EDP Sciences] [Google Scholar]
  • Gottstein S, Hudina S, Lucić A, Maguire I, Ternjej I, Žganec K. 2011. Crveni popis rakova (Crustacea) slatkih i bočatih voda Hrvatske (Red list of freshwater and brackishwater crustaceans of Croatia). Državni zavod za zaštitu prirode (State Institute for Nature Protection), Zagreb, Croatia (in Croatian). [Google Scholar]
  • Gross R, Lovrenčić L, Jelić M, et al. 2021. Genetic diversity and structure of the noble crayfish populations in the Balkan Peninsula revealed by mitochondrial and microsatellite DNA markers. PeerJ 9: e 11838. [Google Scholar]
  • Haddaway NR, Mortimer RJ, Christmas M, Grahame JW, Dunn AM. 2012. Morphological diversity and phenotypic plasticity in the threatened British white‐clawed crayfish (Austropotamobius pallipes). Aquat Conserv 22: 220–231. [CrossRef] [Google Scholar]
  • Helms BS, Vaught RC, Suciu SK, Santos SR. 2015. Cryptic diversity within two endemic crayfish species of the Southeastern US revealed by molecular genetics and geometric morphometrics. Hydrobiologia 755: 283–298. [CrossRef] [Google Scholar]
  • Hewitt GM. 2011. Mediterranean peninsulas: the evolution of hotspots. In Zachos F, Habel J, eds. Biodiversity hotspots. Berlin: Springer, 123–147. [CrossRef] [Google Scholar]
  • Holdich DM, Haffner P, Noël PY. 2006. Species files. In Souty-Grosset C, Holdich DM, Noël PY, Reynolds JD, Haffner P, eds., Atlas of Crayfish in Europe, Patrimoines naturels, Muséum national d'Histoire naturelle, Paris, 49−131. [Google Scholar]
  • Inoue K, Hayes DM, Harris JL, Christian AD. 2013. Phylogenetic and morphometric analyses reveal ecophenotypic plasticity in freshwater mussels Obovaria jacksoniana and Villosa arkansasensis (Bivalvia: Unionidae). Ecol Evol 3: 2670–2683. [CrossRef] [PubMed] [Google Scholar]
  • Jelić M, Klobučar GI, Grandjean F, Puillandre N, Franjević D, Futo M, et al. 2016. Insights into the molecular phylogeny and historical biogeography of the white‐clawed crayfish (Decapoda, Astacidae). Mol Phylogenet Evol 103: 26–40. [CrossRef] [PubMed] [Google Scholar]
  • Jerry DR, Cairns SC. 1998. Morphological variation in the catadromous Australian bass, from seven geographically distinct riverine drainages. J Fish Biol 52: 829–843. [CrossRef] [Google Scholar]
  • Jussila J, Edsman L, Maguire I, Diéguez-Uribeondo J, Theissinger K. 2021. Money Kills Native Ecosystems: European Crayfish as an Example. Front Ecol Evol 9: e648495. [CrossRef] [Google Scholar]
  • Karaman S. 1929. Die Potamobiiden Jugoslaviens. Glas Zemalj Muz Bosni Herceg 41: 147–150. [Google Scholar]
  • Karaman MS. 1962. Ein Beitrag zur Systematik der Astacidae (Decapoda). Crustaceana 3: 173–191. [CrossRef] [Google Scholar]
  • Karaman MS. 1963. Studie der Astacidae (Crustacea, Decapoda). Hydrobiologia 22: 111–132. [CrossRef] [Google Scholar]
  • Kassambara A. 2020. ggpubr: “ggplot2” Based Publication Ready Plots. R Package Version 0.4.0. [Google Scholar]
  • Klingenberg CP. 2011. MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour 11: 353–357. [Google Scholar]
  • Klingenberg CP. 2013. Visualizations in geometric morphometrics: how to read and how to make graphs showing shape changes. Hystrix 24: 15–24. [Google Scholar]
  • Klingenberg CP. 2016. Size, shape, and form: concepts of allometry in geometric morphometrics. Dev Genes Evol 226: 113–137. [CrossRef] [PubMed] [Google Scholar]
  • Krzanowski WJ. 2000. Principles of Multivariate Analysis: A User's Perspective. Oxford: Oxford University Press, 586 p. [Google Scholar]
  • Laggis A, Baxevanis AD, Charalampidou A, Maniatsi S, Triantafyllidis A, Abatzopoulos T. 2017. Microevolution of the noble crayfish (Astacus astacus) in the Southern Balkan Peninsula. BMC Evol Biol 17: 122. [CrossRef] [PubMed] [Google Scholar]
  • Langerhans RB. 2008. Predictability of phenotypic differentiation across flow regimes in fishes. Integr Comp Biol 48: 750–768. [CrossRef] [PubMed] [Google Scholar]
  • Lovrenčić L, Pavić V, Majnarić S, Abramović L, Jelić M, Maguire I. 2020a. Morphological diversity of the stone crayfish − traditional and geometric morphometric approach. Knowl Manag Aquat Ecosyst 421: 1. [Google Scholar]
  • Lovrenčić L, Bonassin L, Boštjančić LJL, et al. 2020b. New insights into the genetic diversity of the stone crayfish: taxonomic and conservation implications. BMC Evol Biol 20: 146. [CrossRef] [PubMed] [Google Scholar]
  • Lovrenčić L, Temunović M, Gross R, Grgurev M, Maguire I. 2022. Integrating population genetics and species distribution modelling to guide conservation of the noble crayfish, Astacus astacus, in Croatia. Sci Rep 12: 2040. [CrossRef] [PubMed] [Google Scholar]
  • Maguire I, Dakić L. 2011. Comparative analyses of Astacus leptodactylus morphological characteristics from Croatia and Armenia. Biologia 66: 491–498. [Google Scholar]
  • Maguire I, Podnar M, Jelić M, et al. 2014. Two distinct evolutionary lineages of the Astacus leptodactylus species-complex (Decapoda: Astacidae) inferred by phylogenetic analyses. Invertebr Syst 28: 117–123. [CrossRef] [Google Scholar]
  • Maguire I, Marn N, Klobučar G. 2017. Morphological evidence for hidden diversity in the threatened stone crayfish Austropotamobius torrentium (Schrank, 1803) (Decapoda: Astacoidea: Astacidae) in Croatia. J Crustacean Biol 37: 7–15. [CrossRef] [Google Scholar]
  • Maguire I, Klobučar G, Žganec K, Jelić M, Lucić A, Hudina S. 2018. Recent changes in distribution pattern of freshwater crayfish in Croatia − threats and perspectives. Knowl Manag Aquat Ecosyst 419: 2. [CrossRef] [EDP Sciences] [Google Scholar]
  • Malato G, Shervette VR, Navarrete Amaya R, et al. 2017. Parallel body shape divergence in the Neotropical fish genus Rhoadsia (Teleostei: Characidae) along elevational gradients of the western slopes of the Ecuadorian Andes. PLOS ONE 12: e0179432. [CrossRef] [PubMed] [Google Scholar]
  • Malavé BM, Styga JM, Clotfelter ED. 2018. Size, shape, and sex dependent variation in force production by crayfish chelae. J Morphol 279: 312–318. [CrossRef] [PubMed] [Google Scholar]
  • Mathews LM, Adams L, Anderson E, Basile M, Gottardi E, Buckholt MA. 2008. Genetic and morphological evidence for substantial hidden biodiversity in a freshwater crayfish species complex. Mol Phylogenet Evol 48: 126–135. [Google Scholar]
  • Mazerolle MJ. 2021. Package ‘AICcmodavg’: Model Selection and Multimodel Inference Based on (Q)AIC(c). R Package Version 2.3.1. [Google Scholar]
  • McKeown AH, Schmidt RW. 2013. Geometric morphometrics. In DiGangi EA, Moore MK, eds. Research methods in human skeletal biology. Academic Press, 325–359. [CrossRef] [Google Scholar]
  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J. 2000. Biodiversity hotspots for conservation priorities. Nature 403: 853–858. [PubMed] [Google Scholar]
  • Perry WL, Jacks AM, Fiorenza D, Young M, Kuhnke R, Jacquemin SJ. 2013. Effects of water velocity on the size and shape of rusty crayfish. Orconectes rusticus. Freshw Sci 32: 1398–1409. [CrossRef] [Google Scholar]
  • Previšić A, Walton C, Kučinić M, Mitrikeski P, Kerovec M. 2009. Pleistocene divergence of Dinaric Drusus endemics (Trichoptera, Limnephilidae) in multiple microrefugia within the Balkan Peninsula. Mol Ecol 18: 634–647. [CrossRef] [PubMed] [Google Scholar]
  • R Core Team. 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL [Google Scholar]
  • Rohlf FJ. 2015. The tps series of software. Hystrix 26: 1–4. [Google Scholar]
  • Rudolph E, Colihueque N, Yanez M. 2016. Morphological and genetic analysis in morphologically divergent river and lake specimens of the freshwater crayfish Samastacus spinifrons (Philippi, 1882) (Decapoda, Parastacidae). Crustaceana 89: 877–899. [CrossRef] [Google Scholar]
  • Scalici M, Macale D, Gibertini G. 2010. Allometry in the ontogenesis of Austropotamobius pallipes species complex (Decapoda: Astacidae): the use of geometric morphometrics. Ital J Zool 77: 296–302. [CrossRef] [Google Scholar]
  • Scalici M, Bravi R. 2012. Solving alpha‐diversity by morphological markers contributes to arranging the systematic status of a crayfish species complex (Crustacea, Decapoda). J Zool Syst Evol Res 50: 89–98. [CrossRef] [Google Scholar]
  • Schlager S, Jefferis G, Ian D, Schlager MS. 2021. Package ‘Morpho’: Calculations and Visualisations Related to Geometric Morphometrics. R Package Version 2.9. [Google Scholar]
  • Schrimpf A, Theissinger K, Dahlem J, et al. 2014. Phylogeography of noble crayfish (Astacus astacus) reveals multiple refugia. Freshw Biol 59: 761–776. [CrossRef] [Google Scholar]
  • Schrimpf A, Piscione M, Cammaerts R, et al. 2017. Genetic characterization of Western European noble crayfish populations (Astacus astacus) for advanced conservation management strategies. Conserv Genet 18: 1299–1315. [CrossRef] [Google Scholar]
  • Sint D, Dalla Via J, Füreder L. 2005. Morphological variations in Astacus astacus L. and Austropotamobius pallipes (Lereboullet) populations. Bull Fr Pêche Piscic 376–377: 637–652. [CrossRef] [EDP Sciences] [Google Scholar]
  • Sint D, Dalla Via J, Füreder L. 2006. The genus Austropotamobius in the Ausserfern region (Tyrol, Austria) with an overlap in the distribution of A. torrentium and A. pallipes populations. Bull Fr Pêche Piscic 380–381: 1029–1040. [CrossRef] [EDP Sciences] [Google Scholar]
  • Sint D, Dalla Via J, Füreder L. 2007. Phenotypical characterization of indigenous freshwater crayfish populations. J Zool 273: 210–219. [CrossRef] [Google Scholar]
  • Sommer RJ. 2020. Phenotypic plasticity: from theory and genetics to current and future challenges. Genetics 215: 1–13. [CrossRef] [PubMed] [Google Scholar]
  • Souty-Grosset C, Reynolds JD. 2009. Current ideas on methodological approaches in European crayfish conservation and restocking procedures. Knowl Manag Aquat Ecosyst 394–395: 01. [CrossRef] [EDP Sciences] [Google Scholar]
  • Strayer DL, Dudgeon D. 2010. Freshwater biodiversity conservation: recent progress and future challenges. J N Am Benthol Soc 29: 344–358. [CrossRef] [Google Scholar]
  • Westman K, Pursiainen M, Vilkman R. 1978. A new folding trap model which prevents crayfish from escaping. Freshwater crayfish 4: 235–242. [Google Scholar]
  • Wickham H. 2016. ggplot2: Elegant graphics for data analysis. Springer, 213 p. [Google Scholar]
  • Wilke CO, Wickham H, Wilke MCO. 2019. Package ‘cowplot’. Streamlined Plot Theme and Plot Annotations for ‘ggplot2'. [Google Scholar]
  • Zelditch ML, Swiderski DL, Sheets HD, Fink WL. 2004. Geometric morphometrics for biologists: a primer. Elsevier Academic Press, San Diego, 443 p. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.