Issue
Knowl. Manag. Aquat. Ecosyst.
Number 423, 2022
Climate change impact on freshwater communities and ecosystem functioning
Article Number 10
Number of page(s) 13
DOI https://doi.org/10.1051/kmae/2022007
Published online 11 March 2022
  • Araùjo MB, Peterson AT. 2012. Uses and misuses of bioclimatic envelope modeling. Ecology 93: 1527–1539. [CrossRef] [PubMed] [Google Scholar]
  • Baras E, Raynaud T, Slembrouck J, Caruso D, Cochet C, Legendre M. 2011. Interactions between temperature and size on the growth, size heterogeneity, mortality and cannibalism in cultured post-hatch stage and juveniles of the Asian catfish, Pangasianodon hypophthalmus (Sauvage). Aquac Res 42: 260–276. [CrossRef] [Google Scholar]
  • Barron J, Jensen N, Anders P, Egan J, Ireland S, Cain K. 2012. Effects of temperature on the intensive culture performance of larval and juvenile North American burbot (Lota lota maculosa). Aquaculture 365: 67–73. [CrossRef] [Google Scholar]
  • Berggren H, Nordahl O, Tibblin P, Larsson P, Forsman A. 2016. Testing for local adaptation to spawning habitat in sympatric subpopulations of pike by reciprocal translocation of embryos. PLoS One 11: e0154488 [CrossRef] [PubMed] [Google Scholar]
  • Billard R. 1996. Reproduction of pike: gametogenesis, gamete biology and early development. Fish Fish 19: 13–43. [Google Scholar]
  • Boglione C, Gisbert E, Gavaia P, et al. 2013. Skeletal anomalies in reared European fish larvae and juveniles. Part 2: Main typologies, occurrences and causative factors. Rev Aquac 5: S121– S167. [CrossRef] [Google Scholar]
  • Bondarenko V, Drozd B, Policar T. 2015. Effect of water temperature on egg incubation time and quality of newly hatched larvae of northern pike (Esox lucius L., 1758). J Appl Ichthyol 31: 45–50. [CrossRef] [Google Scholar]
  • Bruslé J, Quingnard JP. 2001. Biologie des poissons d'eau douce européens. Collection aquaculture-pisciculture. [Google Scholar]
  • Buisson L. 2009. Des rivières françaises et changement climatique: impacts sur la distribution des espèces et incertitudes des projections. Thèse de doctorat de l'université de Toulouse. 282 p. http://ethesis.inp-toulouse.fr/archive/00000946/01/buisson.pdf. [Google Scholar]
  • Casselman JM, Lewis CA. 1996. Habitat requirements of northern pike (Esox lucius). Can J Fish Aquat Sci 53: 161–174. [CrossRef] [Google Scholar]
  • Cavalli RO, Scardua MP, Wasielesky WJ. 1997. Reproductive performance of different Sized Wild and Pond‐reared Penaeus paulensis Females. J World Aquac Soc 28: 215–300. [Google Scholar]
  • Chauveheid A, Billard R. 1983. Incubation and hatching of pike eggs and larval yolk resorption. INRA. [Google Scholar]
  • Cooper J. 2000. Comparative development and ecology of northern pike Esox lucius and muskellunge E. masquinongy eggs and larvae post-hatch stage in the upper St. Lawrence River and the implications of changes in historical spawning habitat. State University of New York, College of Environmental Science and Forestry, Syracuse. [Google Scholar]
  • De Clercq A, Perrott MR, Davie PS, Preece MA, Huysseune A, Witten PE. 2017. The external phenotype-skeleton link in post-hatch farmed Chinook salmon (Oncorhynchus tshawytscha). J Fish Dis 41: 511–527. [Google Scholar]
  • Denys GP, Dettai A, Persat H, Hautecœur M, Keith P. 2014. Morphological and molecular evidence of three species of pikes Esox spp. (Actinopterygii, Esocidae) in France, including the description of a new species. C. R. Biologies 337: 521–534. [CrossRef] [Google Scholar]
  • Dionısio GC, Campos C, Valente MP, Conceicao LEC, Cancela ML, Gavaia PJ. 2012. Effect of egg incubation temperature on the occurrence of skeletal deformities in Solea senegalensis. J Appl Ichthyol 28: 471–476. [CrossRef] [Google Scholar]
  • Dou S, Masuda R, Tanaka M, Tsukamoto K. 2002. Feeding resumption, morphological changes and mortality during starvation in Japanese flounder larvae. J Fish Biol 60: 1363–1380. [CrossRef] [Google Scholar]
  • Dou SZ, Masuda R, Tanaka M, Tsukamoto K. 2005. Effects of temperature and delayed initial feeding on the survival and growth of Japanese flounder larvae. J Fish Biol 66: 362–377. [CrossRef] [Google Scholar]
  • Dubé J, Gravel Y. 1978. Plan pilote d'aménagement intégré des ressources biologiques du territoire de la frayère du ruisseau Saint-Jean, comté de Châteauguay, Québec, p 52. [Google Scholar]
  • Durtsche RD, Jonsson B, Greenberg LA. 2021. Thermal conditions during embryogenesis influence metabolic rates of juvenile brown trout Salmo trutta. Ecosphere 12: e03374. [CrossRef] [Google Scholar]
  • Edeline E, Haugen TO, Weltzien FA, et al. 2010. Body downsizing caused by non-consumptive social stress severely depresses population growth rate. Proc R Soc B 277: 843–851. [CrossRef] [PubMed] [Google Scholar]
  • Farrell JM, Mead JV, Murry BA. 2006. Protracted spawning of St. Lawrence River northern pike (Esox lucius): simulated effects on survival, growth, and production. Ecol Freshw Fish 15: 169–179. [CrossRef] [Google Scholar]
  • Forsman A, Tibblin P, Berggren H, Nordahl O, Koch-Schmidt P, Larsson P. 2015. Pike Esox lucius as an emerging model organism for studies in ecology and evolutionary biology: a review. J Fish Biol 87: 472–9. [CrossRef] [PubMed] [Google Scholar]
  • Ghalambor CK, Huey RB, Martin PR, Tewksbury JJ, Wang G. 2006. Are mountain passes higher in the tropics? Janzen's hypothesis revisited. Integr Comp Biol 1: 5–17. [CrossRef] [PubMed] [Google Scholar]
  • Georga I, Koumoundouros G. 2010. Thermally induced plasticity of body shape in adult zebrafish Danio rerio (Hamilton, 1822). J Morphol 271: 1319–1327. [CrossRef] [PubMed] [Google Scholar]
  • Ginter K. 2012. The diet of juvenile pikeperch Sander lucioperca in lakes Peipsi and Võrtsjärv: relations between long-term changes in the fish communities and food resources in large shallow lakes. These de doctorat: Doctoral Committee for Agricultural and Environmental Sciences of the Estonian University of Life Sciences has accepted the thesis for the defense of the degree of Doctor of Philosophy in Hydrobiology. [Google Scholar]
  • Gustafsson P, Bergman E, Greenumbererg LA. 2010. Functional response and size-dependent foraging on aquatic and terrestrial prey by brown trout (Salmo trutta L.). Ecol Freshw Fish 19: 170–177. [CrossRef] [Google Scholar]
  • Hassler TJ. 1982. Effect of temperature on survival of northern pike embryos and yolk-sac larvae. Freshwater Fish Culture In The United States 4: 174–178. [Google Scholar]
  • Hennessey S. 2011. Esox lucius: Northern pike. Aquatic Invasion Ecology Fall. FISH 423. [Google Scholar]
  • Holm J, Palace V, Siwik P, et al. 2005. Developmental effects of bioaccumulated selenium in eggs and Frye of two salmonid species. Environ Toxicol Chem 24: 2373–2381. [CrossRef] [PubMed] [Google Scholar]
  • Houde ED. 1989. Comparative growth, mortality, and energetics of marine fish larvae: temperature and implied latitudinal effects. Fish Bull 87: 471–495. [Google Scholar]
  • IPCC, 2018.: Summary for Policymakers. In: Global Warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte V, Zhai P, Pörtner HO, Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia W, Péan C, Pidcock R, Connors S, Matthews JBR, Chen Y, Zhou X, Gomis MI, Lonnoy E, Maycock T, Tignor M, and Waterfield T (eds.)]. [Google Scholar]
  • Jaworski A, Kamler E. 2002. Development of a bioenergetics model for fish embryos and post-hatch stage during the yolk feeding period. J Fish Biol 60: 785–809. [CrossRef] [Google Scholar]
  • Jezierska B, Ługowska K, Witeska M. 2009. The effects of heavy metals on embryonic development of fish (a review). Fish Physiol Biochem 35: 625–640. [CrossRef] [PubMed] [Google Scholar]
  • Jordaan A, Hayhurst E, Kling J. 2005. The influence of temperature on the stage at hatch of laboratory reared Gadus morhua and implications for comparisons of length and morphology. J Fish Biol 68: 7–24. [Google Scholar]
  • Kallasvuo M, Salonen M, Lappalainen A. 2010. Does the zooplankton prey availability limit the larval habitats of pike in the Baltic Sea? Estuar Coast Shelf Sci 86: 148–156. [CrossRef] [Google Scholar]
  • Kaminski R, Kamler E, Korwin-Kossakowski M, Myszkowski L, Wolnicki J. 2006. Effects of different incubation temperatures on the yolk-feeding stage of Eupallasella percnurus (Pallas). J Fish Biol 68: 1077–1090. [CrossRef] [Google Scholar]
  • Kamler E, Keckeis H, Bauer-Nemeschkal E. 1998. Temperature-induced changes of survival, development and yolk partitioning in Chondrostoma nasus. J Fish Biol 53: 658–682. [Google Scholar]
  • Kamler E. 1992. Early life history of fish: An energetics approach. Fish Fish Ser 4, ed. Pitcher TJ. 267p. [Google Scholar]
  • Kamler E. 2002. Ontogeny of yolk-feeding fish: an ecological perspective. Rev Fish Biol Fish 12: 79–103. [CrossRef] [Google Scholar]
  • Kamler E. 2008. Ressource allocation in yolk-feeding fish. Rev Fish Biol Fish 18: 143–200. [CrossRef] [Google Scholar]
  • Keith P, Poulet N, Denys G, Changeux T, Feunteun É, Persat H, 2020. Les Poissons d'eau douce de France. Deuxième édition. Muséum national d'Histoire naturelle; Biotope,: 704 p. [Google Scholar]
  • Kangur K, Milius A, Mols T, Laugaste R, Haberman J. 2002. Lake Peipsi: Changes in nutrient elements and plankton communities in the last decade. Aquac Ecosyst Health 5: 363–377. [CrossRef] [Google Scholar]
  • Kobler A, Klefoth T, Mehner T, Arlinghaus R. 2009. Coexistence of behavioural types in an aquatic top predator: a response to resource limitation? Oecologia 161: 837–847. [CrossRef] [PubMed] [Google Scholar]
  • Korwin-Kossakowski KM. 2008. The influence of temperature during the embryonic period on larval growth and development in carp, Cyprinus carpio L., and grass carp, Ctenopharyngodon idella: Theorical and pratical aspect. Arc Pol Fish 16: 231–316. [Google Scholar]
  • Kucharczyk D, Luczynski M, Kujawa R, Czerkies P. 1997. Effect of temperature on embryonic and larval development of bream (Abramis brama L.). Aquat Sci 59: 214–224. [Google Scholar]
  • Lahnsteiner F. 2012. Thermotolerance of brown trout, Salmo trutta, gametes and embryos to increased water temperatures. J Appl Ichthyol 28: 745–751. [CrossRef] [Google Scholar]
  • Leggett WC, Deblois E. 1994. Recruitment in marine fishes: is it regulated by starvation and predation in the egg and larval stages? Neth J Sea Res 32: 119–134. [Google Scholar]
  • Lillelund VK. 1966. Versuche zur erbrutung der Eier vom Hecht, Exos lucius L., in Abhängigkeit von Temperatur und Licht. Arch Fisher 17: 95–113. [Google Scholar]
  • Machniak K. 1975. The effects of hydroelectric development on the biology of northern fishes. A literature review and bibliography Canadian Fisheries Marine Service p68. [Google Scholar]
  • Martell D, Kieffer J, Trippel E. 2005. Effects of temperature during early life history on embryonic and larval development and growth in haddock. J Fish Biol 66: 1558–1575. [CrossRef] [Google Scholar]
  • Massey M, Hutchings J. 2020. Thermal variability during ectotherm egg incubation: a synthesis and framework. J Exp Zool 1–13. [Google Scholar]
  • McMahan C, Fuentes-Montejo C, Ginger L, Carrasco JC, Chakrabarty P, Matamoros W. 2020. Climate change models predict decreases in the range of a microendemic freshwater fish in Honduras. Sci Rep 10: 12693. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Miller TJ, Crowder LB, Rice JA, Marschall EA. 1988. Larval size and recruitment mechanisms in fishes: toward a conceptual framework. Can J Fish Aquat Sci 45: 1657–1670. [CrossRef] [Google Scholar]
  • Myers BJE, Lynch AJ, Bunnell DB, et al. 2017. Global synthesis of the documented and projected effects of climate change on inland fishes. Rev Fish Biol Fish 27: 339–361. [CrossRef] [Google Scholar]
  • Nilsson J, Andersson J, Karås P, Sandstrom O. 2004. Recruitment failure and decreasing catches of perch (Perca fluviatilis L.) and pike (Esox lucius L.) in the coastal waters of southeast Sweden. Boreal Environ Res 9: 295–306. [Google Scholar]
  • O'Connor MI, Bruno JF, Gaines SD, et al. 2009. Temperature control of larval dispersal and the implications for marine ecology, evolution, and conservation. PNAS 23: 104–4. [Google Scholar]
  • Ojanguren AF, Braña F. 2003. Thermal dependence of embryonic growth and development in brown trout. J Fish Biol 62: 580–590. [CrossRef] [Google Scholar]
  • Oomen RA, Hutchings JA. 2015. Genetic variability in reaction norms in fishes. Environ Rev 23: 353–366. [CrossRef] [Google Scholar]
  • Osse JW, Van den Boogaart JGM. 1995. Fish larvae, development, allometric growth, and the aquatic environment. ICES Mar Sei Symp 201: 21–34. [Google Scholar]
  • Ott A, Loffler J, Ahnelt H, Keckeis H. 2012. Early development of the postcranial skeleton of the pikeperch Sander lucioperca (Teleostei: Percidae) relating to developmental stages and growth. J Morph 273: 894–908. [CrossRef] [Google Scholar]
  • Pepin P. 1991. The effect of temperature and size on development and mortality rates of the pelagic early life history stages of marine fish. Can J Fish Aquat Sci 48: 503–518. [CrossRef] [Google Scholar]
  • Peterson RH, Martin-Robichaud DJ. 1989. First feeding of Atlantic Salmon (Salmo solar L.) fry as influenced by temperature regime. Aquaculture 78: 35–53. [CrossRef] [Google Scholar]
  • Rahel F, Keleher C, Anderson J. 1996. Potential habitat loss and population fragmentation for cold water fish in the North platte river drainage of the rocky mountains: response to climate warming. J Oceanol Limnol 41: 1116–1123. [CrossRef] [Google Scholar]
  • Réalis-Doyelle E, Pasquet A, De Charleroy D, Fontaine P, Teletchea F. 2016. Strong effects of temperature on the early life stages of a cold stenothermal fish species, brown trout (Salmo trutta L.). PLoS ONE e0155487. [CrossRef] [PubMed] [Google Scholar]
  • Robinson N, Nelson W, Costello M, Sutherland J, Lundquist C. 2017. A systematic review of marine-based species distribution models (SDMs) with Recommendations for Best Practice. Front Mar Sci. [Google Scholar]
  • Skov C, Koed A. 2004. Habitat use of 0+year pike in experimental ponds in relation to cannibalism, zooplankton, water transparency, and habitat complexity. J Fish Biol 64: 448–459. [CrossRef] [Google Scholar]
  • Sunde J, Larsson P, Forsman A. 2019. Adaptations of early development to local spawning temperature in anadromous populations of pike (Esox lucius). Bmc Evol Biol 19: 148. [CrossRef] [PubMed] [Google Scholar]
  • Sunde J, Tamario C, Tibblin P, Larsson P, Forsman A. 2018. Variation in salinity tolerance between and within anadromous subpopulations of pike (Esox lucius). Sci Rep 8: 22. [CrossRef] [PubMed] [Google Scholar]
  • Takle H, Baeverfjord G, Lunde M, Kolstad K, Andersen Ø. 2005. The effect of heat and cold exposure on HSP70 expression and development of deformities during embryogenesis of Atlantic salmon (Salmo salar). Aquaculture 249: 515–524. [CrossRef] [Google Scholar]
  • Telesh IV. 2004. Plankton of the Baltic estuarine ecosystems with emphasis on Neva Estuary: a review of present knowledge and research perspectives. Mar Poll Bull 49: 206–219. [CrossRef] [Google Scholar]
  • Teletchea F, Fontaine P. 2010. Comparison of early life-stage strategies in temperate freshwater fish species: trade-offs are directed towards first feeding of larvae in spring and early summer. J Fish Biol 77: 257–278. [CrossRef] [PubMed] [Google Scholar]
  • Teletchea F, Fostier A, Le Bail PY, Jalabert B, Gardeur JN, Fontaine P. 2007. STOREFISH: A new database dedicated to the reproduction of temperate freshwater teleost fishes. Cybium 31: 237–245. [Google Scholar]
  • Teletchea F, Fostier A, Kamler E, et al. 2009a. Comparative analysis of reproductive traits in 65 freshwater fish species: application to the domestication of new fish species. Rev Fish Biol Fish 19: 403–430. [CrossRef] [Google Scholar]
  • Teletchea F, Gardeur JN, Kamler E, Fontaine P. 2009b. The relationship of oocyte diameter and incubation temperature to incubation time in temperate freshwater fish species. J Fish Biol 74: 652–668. [CrossRef] [PubMed] [Google Scholar]
  • Teletchea S, Teletchea F. 2020. STOREFISH 2.0: a database on the reproductive strategies of teleost fishes. Database, doi: 10.1093/database/baaa095 [Google Scholar]
  • Trabelsi A, Gardeur JN, Teletchea F, Brun-Bellut J, Fontaine P. 2012. Hatching time effect on the intra-spawning larval morphology and growth in Northern pike (Esox lucius). Aquac Res 44: 657–666. [Google Scholar]
  • Trabelsi A, Jaworski A, Kamler E, et al. 2016. The effect of hatching time on the bioenergetics of northern pike (Esox lucius) post-hatch stage from a single egg batch during the endogenous feeding period. Fish Physiol Biochem 42: 593–606. [Google Scholar]
  • Trabelsi-Zouari A. 2011. Effet intra-ponte du moment d'éclosion sur la morphologie, la croissance et l'efficience métabolique des larves de brochet Esox lucius et de carpe commune Cyprinus carpio. PhD dissertation, Nancy 1. [Google Scholar]
  • Tibblin P, Forsman A, Borger T, Larsson P. 2016. Causes and consequences of repeatability, flexibility and individual fine-tuning of migratory timing in pike. J Anim Ecol 85: 136–45. [CrossRef] [PubMed] [Google Scholar]
  • Toomey L, Lecocq T, Pasquet A, Fontaine P. 2021. Finding a rare gem: Identification of a wild biological unit with high potential for European perch larviculture. Aquaculture, 530: 1–8. [Google Scholar]
  • Toomey L, Dellicour S, Vanina T, et al. 2020. Getting off the right foot: Integration of spatial distribution of genetic variability for aquaculture development and regulations, the European perch case Aquaculture 521 (734981), 1–11. [Google Scholar]
  • Toomey L, Bláha M, Mauduit E, et al. 2019. When behavioural geographic differentiation matters: inter-populational comparison of aggressiveness and group structure in the European perch. Aquaculture International, European Percid Fish Culture (Online), pp. 1–15. [Google Scholar]
  • Vagner M, Zambonino-Infante J-L, Mazurais D. 2019. Fish facing global change: are early stages the lifeline? Marine Environmental Research 147: 159–178. [CrossRef] [PubMed] [Google Scholar]
  • Wieser W, Laich A, Medgyesy N. 1992. Energy allocation and yield and cost of growth in young Esox Lucius and Coregonus Lavaretus (Teleostei): Influence of species, prey type and body size body size. J Exp Biol 169: 165–179. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.