Issue
Knowl. Manag. Aquat. Ecosyst.
Number 425, 2024
Riparian ecology and management
Article Number 19
Number of page(s) 13
DOI https://doi.org/10.1051/kmae/2024014
Published online 16 October 2024
  • Allendorf FW, Leary RF, Spruell P, Wenburg JK. 2001. The problems with hybrids: setting conservation guidelines. Trends Ecol Evol 16: 613–622. [CrossRef] [Google Scholar]
  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J Mol Biol 215: 403–410. [CrossRef] [PubMed] [Google Scholar]
  • Anderson EC. 2008. Bayesian inference of species hybrids using multilocus dominant genetic markers. Philos Trans R Soc Lond B Biol Sci 363: 2841–2850. [CrossRef] [PubMed] [Google Scholar]
  • Anderson EC, Thompson EA. 2002. A model-based method for identifying species hybrids using multilocus genetic data. Genetics 160: 1217–1229. [CrossRef] [PubMed] [Google Scholar]
  • Araki H, Schmid C. 2010. Is hatchery stocking a help or harm? Evidence, limitations and future directions in ecological and genetic surveys. Aquaculture 308: S2–S11. [CrossRef] [Google Scholar]
  • Bandelt H, Forster P, Röhl A. 1999. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16: 37–48. [CrossRef] [PubMed] [Google Scholar]
  • Bardakci F, Degerli N, Ozdemir O, Basibuyuk HH. 2006. Phylogeography of the Turkish brown trout Salmo trutta L.: mitochondrial DNA PCR-RFLP variation. J Fish Biol 68: 36–55. [CrossRef] [Google Scholar]
  • Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F. 1996–2004. GENETIX 4.05. logiciel sous Windows TM pour la genetique des populations. Laboratoire Genome, Populations, Interactions, CNRS UMR 5000. Universite de Montpellier II. Montpellier (France). [Google Scholar]
  • Bernatchez L. 2001. The evolutionary history of brown trout (Salmo trutta L.) inferred from phylogeographic, nested clade, and mismatch analyses of mitochondrial DNA variation. Evolution 55: 351–379. [Google Scholar]
  • Bernatchez L, Guyomard R, Bonhomme F. 1992. DNA sequence variation of the mitochondrial control region among geographically and morphologically remote European brown trout Salmo trutta populations. Mol Ecol 1: 161–173. [CrossRef] [PubMed] [Google Scholar]
  • Berrebi P, Jesenšek D, Crivelli AJ. 2017. Natural and domestic introgressions in the marble trout population of Soča River (Slovenia). Hydrobiologia 785: 277–291. [Google Scholar]
  • Berrebi P, Barucchi VC, Splendiani A, Muracciole S, Sabatini A, Palmas F, Tougard C, Arculeo M, Marić S. 2019. Brown trout (Salmo trutta L.) high genetic diversity around the Tyrrhenian Sea as revealed by nuclear and mitochondrial markers. Hydrobiologia 826: 209–231. [CrossRef] [Google Scholar]
  • Berrebi P, Marić S, Snoj A, Hasegawa K. 2020. Brown trout in Japan − introduction history, distribution and genetic structure. Knowl Manag Aquat Ecosyst 421: 18. [CrossRef] [EDP Sciences] [Google Scholar]
  • Berrebi P, Horvath Á, Splendiani A, Palm S, Bernas R. 2021. Genetic diversity of domestic brown trout stocks in Europe. Aquaculture 544: 737043. [CrossRef] [Google Scholar]
  • Bohling J, Haffray P, Berrebi P. 2016. Genetic diversity and population structure of domestic brown trout (Salmo trutta) in France. Aquaculture 462: 1–9. [CrossRef] [Google Scholar]
  • Caudron A, Champigneulle A, Guyomard R, Largiader CR. 2011. Assessment of three strategies practiced by fishery managers for restoring native brown trout (Salmo trutta) populations in Northern French Alpine Streams. Ecol Freshw Fish 20: 478–491. [CrossRef] [Google Scholar]
  • Casanova A, Heras S, Abras A, Roldán MI, Bouza C, Vera M, García-Marín JL, Martínez P. 2022. Genomic hatchery introgression in brown trout (Salmo trutta L.): development of a diagnostic SNP panel for monitoring the impacted mediterranean rivers. Genes 13: 255. [CrossRef] [PubMed] [Google Scholar]
  • Chistiakov DA, Hellemans B, Volckaert FA. 2005. Microsatellites and their genomic distribution, evolution, function and applications: a review with special reference to fish genetics. Aquaculture 255: 129. [Google Scholar]
  • Dudgeon D, Arthington A, Gessner M, Kawabata Z, Knowler D, Lévêque C, Naiman R, Prieur-Richard A, Soto D, Stiassny M, Sullivan C. 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev 81: 163–182. [CrossRef] [PubMed] [Google Scholar]
  • de Meeûs T, Goudet J. 2007. A step-by-step tutorial to use HierFstat to analyse populations hierarchically structured at multiple levels. Infect Genet Evol 7: 731–735. [CrossRef] [PubMed] [Google Scholar]
  • Evanno G, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14: 2611–2620. [CrossRef] [PubMed] [Google Scholar]
  • Excoffier L, Lischer HEL. 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10: 564–567. [Google Scholar]
  • Fernández-Cebrián R, Araguas RM, Sanz N, García-Marín JL. 2014. Genetic risks of supplementing trout populations with native stocks: a simulation case study from current Pyrenean populations. Can J Fish Aquat Sci 71: 1243–1255. [CrossRef] [Google Scholar]
  • Frankham R. 2008. Genetic adaptation to captivity in species conservation programs. Mol Ecol 17: 325–333. [CrossRef] [PubMed] [Google Scholar]
  • García-Marín JL, Jorde PE, Ryman N, Utter F, Pla C. 1991. Management implications of genetic differentiation between native and hatchery populations of brown trout (Salmo trutta) in Spain. Aquaculture 95: 235–249. [CrossRef] [Google Scholar]
  • Goudet J, Jombart T. 2022. hierfstat: Estimation and Tests of Hierarchical F-Statistics. R package version 0.5-11, https://CRAN.R-project.org/package=hierfstat [Google Scholar]
  • Hamilton KE, Ferguson A, Taggart JB, Tomasson T, Walker A, Fahy E. 1989. Post‐glacial colonization of brown trout, Salmo trutta L.: Ldh‐5 as a phylogeographic marker locus. J Fish Biol 35: 651–664. [CrossRef] [Google Scholar]
  • Hammer Ø, Harper DA, Ryan PD. 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4: 9. [Google Scholar]
  • Hansen MM, Ruzzante DE, Nielsen EE, Mensberg KD. 2000. Microsatellite and mitochondrial DNA polymorphism reveals life-history dependent interbreeding between hatchery trout and wild brown trout (Salmo trutta L.). Mol Ecol 9: 583–594. [CrossRef] [PubMed] [Google Scholar]
  • Hansen MM, Kenchington E, Nielsen EE. 2001. Assigning individual fish to populations using microsatellite DNA markers. Fish Fish 2: 93–112. [CrossRef] [Google Scholar]
  • Hansen MM, Jensen LF. 2005. Sibship within samples of brown trout (Salmo trutta) and implications for supportive breeding. Conserv Genet 6: 297–305. [CrossRef] [Google Scholar]
  • Hashemzadeh Segherloo I, Freyhof J, Berrebi P, Ferchaud A-L., Geiger M, Laroche J, Levin BA, Normandeau E, Bernatchez L. 2021. A genomic perspective on an old question: Salmo trouts or Salmo trutta (Teleostei: Salmonidae)? Mol Phylogenet Evol 162: 107204. [CrossRef] [PubMed] [Google Scholar]
  • Henry T, Ferguson A. 1985. Kinetic studies on the lactate dehydrogenase (LDH-5) isozymes of brown trout, Salmo trutta L. Comp Biochem Physiol B 82: 95–98. [CrossRef] [PubMed] [Google Scholar]
  • Horreo JL, Abad D, Dopico E, Oberlin M, García-Vázquez E. 2015. Expansion of non-native brown trout in South Europe may be inadvertently driven by stocking: molecular and social survey in the North Iberian Narcea River. Int J Mol Sci 16: 15546–15559. [CrossRef] [PubMed] [Google Scholar]
  • Jadan M, Strunjak‐Perović I, Topić Popović N, Čož‐Rakovac R. 2015. Three major phylogenetic lineages of brown trout (Salmo trutta Linnaeus, 1758) in the Krka River system (Croatia) revealed by complete mitochondrial DNA control region sequencing. J Appl Ichthyol 31: 192. [CrossRef] [Google Scholar]
  • Jones AG, Small CM, Paczolt KA, Ratterman NL. 2009. A practical guide to methods of parentage analysis. Mol Ecol Resour 10: 6–30. [Google Scholar]
  • Jones OR, Wang J. 2010. COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Resour 10: 551–555. [CrossRef] [Google Scholar]
  • Jug T, Berrebi P, Snoj A. 2005. Distribution of non-native trout in Slovenia and their introgression with native trout populations as observed through microsatellite DNA analysis. Biol Conserv 123: 381–388. [CrossRef] [Google Scholar]
  • Kanjuh T. 2023. Genetic diversity of brown trout (Salmo trutta L., 1758) of the Danube basin on the territory of Croatia. University of Zagreb, University of Belgrade. International dual doctorate (Cotutelle). [Google Scholar]
  • Laikre L, Antunes A, Apostolidis A, Berrebi P, Dugid A, Ferguson A, García-Marín JL, Guyomard R, Hansen MM, Hindar K, Koljonen ML, Largiader C, Martínez P, Nielsen EE, Palm S, Ruzzante DE, Ryman N, Trianthaphyllidis C. 1999. Conservation genetic management of brown trout (Salmo trutta) in Europe. Report by the concerted action on identification, management and exploitation of genetic resources in the brown trout (Salmo trutta), » TROUTCONCERT»; EU FAIR CT97–3882. Silkeborg, Danmarks fiskeri undersrgelser, p 91. [Google Scholar]
  • Leigh JW, Bryant D. 2015. PopART: Full‐feature software for haplotype network construction. Methods Ecol Evol 6: 1110–1116. [CrossRef] [Google Scholar]
  • Lenhardt M, Smederevac-Lalić M, Hegediš A, Skorić S, Cvijanović G, Višnjić-Jeftić Ž, Djikanović V, Jovičić K, Jaćimović M, Jarić I. 2020. Human impacts on fish Fauna in the Danube River in Serbia: current status and ecological implications. In: Human Impact on Danube Watershed Biodiversity in the XXI Century. Cham: Springer, pp. 257–279. [CrossRef] [Google Scholar]
  • Lerceteau-Köhler E, Weiss S. 2006. Development of a multiplex PCR microsatellite assay in brown trout Salmo trutta, and its potential application for the genus. Aquaculture 258: 641–645. [CrossRef] [Google Scholar]
  • Lewis PO, Zaykin D. 2001. Genetic data analysis: computer program for the analysis of allelic data. Version 1.0 (d16c). http://www.softsea.com/download/GDA-Genetic-Data-Analysis.html [Google Scholar]
  • Marić S, Sušnik S, Simonović P, Snoj A. 2006. Phylogeographic study of brown trout from Serbia, based on mitochondrial DNA control region analysis. Genet Sel Evol 38: 1–20. [CrossRef] [Google Scholar]
  • Marić S, Simonović P, Razpet A. 2010. Genetic characterization of broodstock brown trout from Bled fish-farm, Slovenia. Period Biol 112: 145–148. [Google Scholar]
  • Marić S, Sušnik Bajec S, Schöffmann J, Kostov V, Snoj A. 2017. Phylogeography of stream-dwelling trout in the Republic of Macedonia and a molecular genetic basis for revision of the taxonomy proposed by S. Karaman. Hydrobiologia 785: 249–260. [Google Scholar]
  • Marić S, Stanković D, Sušnik Bajec S, Vukić J, Šanda R, Stefanov T, Nikolić D, Snoj A. 2022. Perils of brown trout (Salmo spp.) mitigation-driven translocations: a case study from the Vlasina Plateau, Southeast Serbia. Biol Invasions 24: 999–1016. [CrossRef] [Google Scholar]
  • McLean JE, Seamons TR, Dauer MB, Bentzen P, Quinn TP. 2008. Variation in reproductive success and effective number of breeders in a hatchery population of steelhead trout (Oncorhynchus mykiss): examination by microsatellite-based parentage analysis. Conserv Genet 9: 295–304. [CrossRef] [Google Scholar]
  • McMeel OM, Hoey EM, Ferguson A. 2001. Partial nucleotide sequences, and routine typing by polymerase chain reaction-restriction fragment length polymorphism, of the brown trout (Salmo trutta) lactate dehydorgenase, LDHC1*90 and *100 alleles. Mol Ecol 10: 29–34. [CrossRef] [PubMed] [Google Scholar]
  • Poteaux C, Bonhomme F, Berrebi P. 1999. Microsatellite polymorphism and genetic impact of restocking in Mediterranean brown trout (Salmo trutta L). Heredity 82: 645–653. [CrossRef] [PubMed] [Google Scholar]
  • Pritchard JK, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945–959. [CrossRef] [PubMed] [Google Scholar]
  • Pustovrh G, Snoj A, Sušnik Bajec S. 2014. Molecular phylogeny of Salmo of the western Balkans, based upon multiple nuclear loci. Genet Sel Evol 46: 1–12. [CrossRef] [Google Scholar]
  • Righi T, Fasola E, Iaia M, Stefani F, Volta P. 2023. Limited contribution of hatchery-produced individuals to the sustainment of wild marble trout (Salmo marmoratus Cuvier, 1829) in an Alpine basin. Sci Total Environ 892: 164555. [CrossRef] [PubMed] [Google Scholar]
  • Rousset F. 2008. Genepop'007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8: 103–106. [CrossRef] [PubMed] [Google Scholar]
  • R Core Team. 2022. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/. [Google Scholar]
  • Sanz N, Araguas RM, Fernandez R, Vera M, García-Marín JL. 2009. Efficiency of markers and methods for detecting hybrids and introgression in stocked populations.Conserv Genet 10: 225–236. [CrossRef] [Google Scholar]
  • Sanz N. 2018. Phylogeographic history of brown trout: a review. In Lobón-Cerviá J, Sanz N, eds. Brown Trout: Biology, Ecology and Management New York: Wiley, pp. 17–63. [Google Scholar]
  • Saura M, Faria R. 2011. Genetic tools for restoration of fish populations. J Appl Ichthyol 27: 5–15. [CrossRef] [Google Scholar]
  • Sayers EW, Cavanaugh M, Clark K, Pruitt KD, Schoch CL, Sherry ST, Karsch-Mizrachi I. 2022. GenBank. Nucleic Acids Res 50: D161–D164. [CrossRef] [PubMed] [Google Scholar]
  • Schmidt T, Zagars M, Roze A, Schulz R. 2017. Genetic diversity of a Daugava basin brown trout (Salmo trutta) brood stock. Knowl Manag Aquat Ecosyst 418: 55. [CrossRef] [EDP Sciences] [Google Scholar]
  • Simonović P, Tošić A, Škraba Jurlina D, Nikolić V, Piria M, Tomljanović T, Šprem N, Mrdak D, Milošević D, Bećiraj A, Dekić R, Povž M. 2017. Diversity of brown trout Salmo cf. trutta in the River Danube basin of western Balkans as assessed from the structure of their mitochondrial control region haplotypes. J Ichthyol 57: 603–616. [CrossRef] [Google Scholar]
  • Snoj A, Bravničar J, Marić S, Sušnik Bajec S, Benaissa H, Schöffmann J. 2021. Nuclear DNA reveals multiple waves of colonisation, reticulate evolution and a large impact of stocking on trout in north-west Africa. Hydrobiologia 848: 3389–3405. [Google Scholar]
  • Snoj A, Marić S, Sušnik Bajec S, Berrebi P, Janjani S, Schoffmann J. 2011. Phylogeographic structure and demographic patterns of brown trout in North-West Africa. Mol Phylogenet Evol 61: 203–211. [CrossRef] [PubMed] [Google Scholar]
  • Splendiani A, Ruggeri P, Giovannotti M, Pesaresi S, Occhipinti G, Fioravanti T, Lorenzoni M, Nisi Cerioni P, Caputo Barruchi V. 2016. Alien brown trout invasion of the Italian peninsula: the role of geological, climate and anthropogenic factors. Biol Invasions 18: 2029–2044. [CrossRef] [Google Scholar]
  • Szpiech ZA, Jakobsson M, Rosenberg NA. 2008. ADZE: a rarefaction approach for counting alleles private to combinations of populations. Bioinformatics 24: 2498–2504. [CrossRef] [PubMed] [Google Scholar]
  • Škraba Jurlina D, Marić A, Karanović J, Nikolić V, Brkušanin M, Kanjuh, T, Mrdak D, Simonović P. 2018. Effect of the introgression of Atlantic brown trout, Salmo trutta, into Adriatic trout, Salmo farioides in a stream at the drainage area of the Adriatic Sea basin of Montenegro. Acta Ichthyol Piscat 48: 363–372. [CrossRef] [Google Scholar]
  • Škraba Jurlina D, Marić A, Mrdak D, Kanjuh T, Špelić I, Nikolić V, Piria M, Simonović P. 2020. Alternative life-history in native trout (Salmo spp.) suppresses the invasive effect of alien trout strains introduced into streams in the western part of the Balkans. Front Ecol Evol 8: 188. [CrossRef] [Google Scholar]
  • Tamura K, Nei M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10: 512–526. [PubMed] [Google Scholar]
  • Tošić A, Škraba D, Nikolić V, Čanak Atlagić J, Mrdak D, Simonović P. 2016. Haplotype diversity of brown trout Salmo trutta (L.) in the broader Iron Gate area. Turk J Zool 40: 655–662. [CrossRef] [Google Scholar]
  • Uiblein F, Jagsch A, Honsig‐Erlenburg W, Weiss S. 2001. Status, habitat use, and vulnerability of the European grayling in Austrian waters. J Fish Biol 59: 223–247. [Google Scholar]
  • Van Oosterhout C, Hutchinson WF, Wills DP, Shipley P. 2004. MICRO‐CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4: 535–538. [CrossRef] [Google Scholar]
  • Veličković T. 2023. Koncipiranje modela za održivo korišćenje populacija kompleksa potočne pastrmke (Salmo spp.) na području Srbije. University of Kragujevac: Doctoral Dissertation. [Google Scholar]
  • Veličković T, Snoj A, Simić V, Šanda R, Vukić J, Barcytė D, Stanković D, Marić S. 2023. A new perspective on the molecular dating of the brown trout complex with an extended phylogeographic information on the species in Serbia. Contrib Zool 92: 362–389. [Google Scholar]
  • Vera M, Cortey M, Sanz N, García‐Marín JL. 2010. Maintenance of an endemic lineage of brown trout (Salmo trutta) within the Duero river basin. J Zoolog Syst Evol Res 48: 181–187. [CrossRef] [Google Scholar]
  • Vera M, Aparicio, E, Heras S, Abras A, Casanova A, Roldán M-I., García-Marin J-L. 2023. Regional environmental and climatic concerns on preserving native gene pools of a least concern species: brown trout lineages in Mediterranean streams. Sci Total Environ 862: 160739. [CrossRef] [PubMed] [Google Scholar]
  • Wang C, Schroeder KB, Rosenberg NA. 2012. A maximum-likelihood method to correct for allelic dropout in microsatellite data with no replicate genotypes. Genetics 192: 651–669. [CrossRef] [PubMed] [Google Scholar]
  • Ward RD. 2000. Genetics in fisheries management. Hydrobiologia 420: 191–201. [Google Scholar]
  • Weir BS, Cockerham CC. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38: 1358. [Google Scholar]
  • Williams SE, Hoffman EA. 2009. Minimizing genetic adaptation in captive breeding programs: a review. Biol Conserv 142: 2388–2400. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.