Issue
Knowl. Manag. Aquat. Ecosyst.
Number 423, 2022
Topical Issue on Fish Ecology
Article Number 11
Number of page(s) 8
DOI https://doi.org/10.1051/kmae/2022009
Published online 20 May 2022
  • Agawin NSR, Duarte CM, Agusti S. 2000. Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnol Oceanogr 45: 591–600. [CrossRef] [Google Scholar]
  • APHA. 1998. Standard methods for the examination of water and wastewater, 20th ed. Washington: American Public Health Association. [Google Scholar]
  • Attayde JL, Hansson LA. 1999. Effects of nutrient recycling by zooplankton and fish on phytoplankton communities. Oecologia 121: 47–54. [CrossRef] [PubMed] [Google Scholar]
  • Attayde JL, Menezes RF. 2008. Effects of fish biomass and planktivore type on plankton communities. J Plankton Res 30: 885–892. [CrossRef] [Google Scholar]
  • Attayde JL, Nes EHV, Araujo AIL, Corso G, Scheffer M. 2010. Omnivory by planktivores stabilizes plankton dynamics, but may either promote or reduce algal biomass. Ecosystems 13: 410–420. [CrossRef] [Google Scholar]
  • Canonico GC, Arthington A, Mccrary JK, Thieme ML. 2005. The effects of introduced tilapias on native biodiversity. Aquat Conserv: Mar Freshwat Ecosyst 15: 463–483. [CrossRef] [Google Scholar]
  • Carpenter S, Kitchell J. 1993. The trophic cascade in lakes. Biol Conserv 83: 349–350. [Google Scholar]
  • Charvet P, Occhi TVT, Faria L, et al. 2021. Tilapia farming threatens Brazil’s waters. Science 371: 355–356. [CrossRef] [PubMed] [Google Scholar]
  • Chen B, Liu H. 2010. Relationships between phytoplankton growth and cell size in surface oceans: interactive effects of temperature, nutrients, and grazing. Limnol Oceanogr 55: 965–972. [CrossRef] [Google Scholar]
  • Chen B, Liu Z. 2012. Effect of filter-feeding omnivorous fish on zooplankton community. Ecolog Sci 31: 161–166. [Google Scholar]
  • Christoffersen K, Riemann B, Klysner A, Søndergaard M. 1993. Potential role of fish predation and natural populations of zooplankton in structuring a plankton community in eutrophic lake water. Limnol Oceanogr 38: 561–573. [CrossRef] [Google Scholar]
  • Cordero PU, Ekvall MK, Hansson LA. 2015. Responses of cyanobacteria to herbivorous zooplankton across predator regimes: who mows the bloom?. Freshw Biol 60: 960–972. [CrossRef] [Google Scholar]
  • Cui DY, Wang JT, Tan LJ, Dong ZY. 2016. Impact of atmospheric wet deposition on phytoplankton community structure in the South China Sea. Estuar Coast Shelf Sci 173: 1–8. [CrossRef] [Google Scholar]
  • Cyr H, Curtis JM. 1999. Zooplankton community size structure and taxonomic composition affects size-selective grazing in natural communities. Oecologia 118: 306–315. [CrossRef] [PubMed] [Google Scholar]
  • Drenner RW, Gallo KL, Baca RM, Smith JD. 1998. Synergistic effects of nutrient loading and omnivorous fish on phytoplankton biomass. Can J Fish Aquat Sci 55: 2087–2096. [Google Scholar]
  • Figueredo CC, Giani A. 2005. Ecological interactions between Nile tilapia (Oreochromis niloticus, L.) and the phytoplanktonic community of the Furnas Reservoir (Brazil). Freshw Biol 50: 1391–1403. [CrossRef] [Google Scholar]
  • Finkel ZV, Beardall J, Flynn KJ, Quigg A, Rees TAV, Raven JA. 2010. Phytoplankton in a changing world: cell size and elemental stoichiometry. J Plankton Res 32: 119–137. [CrossRef] [Google Scholar]
  • Getachew T, Fernado CH. 1989. The food habits of an herbivorous fish (Oreochromis niloticus Linn.) in Lake Awasa, Ethiopia. Hydrobiologia 174: 195–200. [CrossRef] [Google Scholar]
  • Guariento RD, Carneiro LS, Caliman A, Bozelli RL, Leal JJF, Esteves FDA. 2010. Interactive effects of omnivorous fish and nutrient loading on net productivity regulation of phytoplankton and periphyton. Aquat Biol 10: 273–283. [CrossRef] [Google Scholar]
  • Gurgel J, Fernando CH. 1994. Fisheries in semi-arid northeast Brazil with special reference to the role of tilapias. Int Revue ges Hydrobiol 79: 77–94. [CrossRef] [Google Scholar]
  • Hansson LA. 1992b. Factors regulating periphytic algal biomass. Limnol Oceanogr 37: 322–328. [CrossRef] [Google Scholar]
  • Hansson LA. 1990. Quantifying the impact of periphytic algae on nutrient availability for phytoplankton. Freshw Biol 24: 265–273. [CrossRef] [Google Scholar]
  • Hansson LA. 1992a. The role of food chain composition and nutrient availability in shaping algal biomass development. Ecology 73: 241–247. [CrossRef] [Google Scholar]
  • He H, Jin H, Jeppesen E, Li K, Liu Z, Zhang Y. 2018. Fish-mediated plankton responses to increased temperature in subtropical aquatic mesocosm ecosystems: implications for lake management. Water Res 144: 304–311. [CrossRef] [PubMed] [Google Scholar]
  • Hilligsøe KM, Richardson K, Bendtsen J, Sørensen LL, Nielsen TG, Lyngsgaard MM. 2011. Linking phytoplankton community size composition with temperature, plankton food web structure and sea-air CO2 flux. Deep-Sea Res Part I-Oceanogr Res Pap 58: 826–838. [CrossRef] [Google Scholar]
  • Huang B, Lin X, Hong H. 2000. Distribution and environmental controlling of picophytoplankton in western Xiamen waters. J Oceanogr Taiwan Strait 19: 330–336. [Google Scholar]
  • Iglesias C, Mazzeo N, Meerhoff M, et al. 2011. High predation is of key importance for dominance of small-bodied zooplankton in warm shallow lakes: evidence from lakes, fish exclosures and surface sediments. Hydrobiologia 667: 133–147. [Google Scholar]
  • Jeppesen E, Jensen JP, Søndergaard M, et al. 2004. Impact of fish predation on cladoceran body weight distribution and zooplankton grazing in lakes during winter. Freshw Biol 49: 432–447. [CrossRef] [Google Scholar]
  • Jiménez-Montealegre R, Verdegem M, Zamora JE, Verreth J. 2002. Organic matter sedimentation and resuspension in tilapia (Oreochromis niloticus) ponds during a production cycle. Aquac Eng 26: 1–12. [CrossRef] [Google Scholar]
  • Kolding J. 1993. Population dynamics and life-history styles of Nile tilapia, Oreochromis niloticus, in Ferguson’s Gulf, Lake Turkana, Kenya. Environ Biol Fishes 37: 25–46. [CrossRef] [Google Scholar]
  • Kormas KA, Garametsi V, Nicolaidou A. 2002. Size-fractionated phytoplankton chlorophyll in an Eastern Mediterranean coastal system (Maliakos Gulf, Greece). Helgoland Mar Res 56: 125–133. [CrossRef] [Google Scholar]
  • Kour R, Bhatia S, Sharma KK. 2014. Nile tilapia (Oreochromis niloticus) as a successful biological invader in Jammu (J&K) and its impacts on native ecosystem. Biology 10: 1–5. [Google Scholar]
  • Lazzaro X, Bouvy M, Ribeiro RA, et al. 2003. Do fish regulate phytoplankton in shallow eutrophic Northeast Brazilian reservoirs?. Freshw Biol 48: 649–668. [CrossRef] [Google Scholar]
  • Li WKW. 2006. Macroecological patterns of phytoplankton in the northwestern North Atlantic Ocean. Nature 419: 154–157. [Google Scholar]
  • Lu K, Jin C, Dong S, Gu B, Bowen SH. 2006. Feeding and control of blue-green algal blooms by tilapia (Oreochromis niloticus). Hydrobiologia 568: 111–120. [CrossRef] [Google Scholar]
  • Lu K, Jin C, Wang Y. 2005. Control of cyanobacterial blooms in eutrophication lakes by tilapia. J Fish China 29: 811–818. [Google Scholar]
  • Lynch M, Shapiro J. 1981. Predation, enrichment, and phytoplankton community structure. Limnol Oceanogr 26: 86–102. [CrossRef] [Google Scholar]
  • Marañón E. 2015. Cell size as a key determinant of phytoplankton metabolism and community structure. Annu Rev Mar Sci 7: 241–264. [CrossRef] [PubMed] [Google Scholar]
  • Mayer T. 2020. Interactions of fish, algae, and abiotic factors in a shallow, tropical pond. Hydrobiologia 847: 4145–4160. [CrossRef] [Google Scholar]
  • Meerhoff M, Mello FT, Kruk C, et al. 2012. Environmental warming in shallow lakes: A review of potential changes in community structure as evidenced from space-for-time substitution approaches. Adv Ecol Res 46: 259–349. [CrossRef] [Google Scholar]
  • Menezes RF, Attayde JL, Vasconcelos FR. 2010. Effects of omnivorous filter-feeding fish and nutrient enrichment on the plankton community and water transparency of a tropical reservoir. Freshw Biol 55: 767–779. [CrossRef] [Google Scholar]
  • Naselli-Flores L. 2014. Morphological analysis of phytoplankton as a tool to assess ecological state of aquatic ecosystems: the case of Lake Arancio, Sicily, Italy. Inland Waters 4: 15–26. [CrossRef] [Google Scholar]
  • Persson A. 1997. Phosphorus release by fish in relation to external and internal load in a eutrophic lake. Limnol Oceanogr 42: 577–583. [Google Scholar]
  • Peterson MS, Slack WT, Woodley CM. 2005. The occurrence of non-indigenous Nile tilapia, Oreochromis niloticus (linnaeus) in coastal Mississippi, USA: ties to aquaculture and thermal effluent. Wetlands 25: 112–121. [CrossRef] [Google Scholar]
  • Razlutskij V, Mei X, Maisak N, et al. 2021. Omnivorous carp (Carassius gibelio) increase eutrophication in part by preventing development of large-bodied zooplankton and submerged macrophytes. Water 13: 1497. [CrossRef] [Google Scholar]
  • Rong Y, Tang Y, Ren L, et al. 2021. Effects of the filter-feeding benthic bivalve Corbicula fluminea on plankton community and water quality in aquatic ecosystems: a mesocosm study. Water 13: 1827. [CrossRef] [Google Scholar]
  • Saha SD, Jana BB. 1998. Control of bloom in a tropical lake: grazing efficiency of some herbivorous fishes. J Fish Biol 53: 12–24. [CrossRef] [Google Scholar]
  • Sanderson SL, Cheer AY, Goodrich JS, Grazlano JD, Callan WT. 2001. Cross flow filtration in suspension-feeding fishes. Nature 412: 439–441. [CrossRef] [PubMed] [Google Scholar]
  • Schindler DW. 1974. Eutrophication and recovery in experimental lakes: Implications for lake management. Science 184: 897–899. [CrossRef] [PubMed] [Google Scholar]
  • Shiomoto A, Fujimoto Y, Mimura N, Sasaki A, Fujita T. 2018. Seasonal variations of chlorophyll a and environmental factors in the coastal area of the Okhotsk Sea, Hokkaido. Nippon Suisan Gakk 84: 241–253. [CrossRef] [Google Scholar]
  • Søndergaard M, Liboriussen L, Pedersen AR, Jeppesen E. 2008. Lake restoration by fish removal: short- and long-term effects in 36 danish lakes. Ecosystems 11: 1291–1305. [CrossRef] [Google Scholar]
  • Starling F, Lazzaro X, Cavalcanti C, Moreira R. 2002. Contribution of omnivorous tilapia to eutrophication of a shallow tropical reservoir: evidence from a fish kill. Freshw Biol 47: 2443–2452. [CrossRef] [Google Scholar]
  • Stockner JG, Antia NJ. 1986. Algal picoplankton from marine and freshwater ecosystems: A multidisciplinary perspective. Can J Fish Aquat Sci 43: 2472–2503. [CrossRef] [Google Scholar]
  • Stockner JG. 1988. Phototrophic Picoplankton: An overview from marine and freshwater ecosystems. Limnol Oceanogr 33: 765–775. [Google Scholar]
  • Suresh AV, Lin CK. 1992. Tilapia culture in saline waters: A review. Aquaculture 106: 201–226. [CrossRef] [Google Scholar]
  • Tõnno I, Agasild H, Kõiv T, Freiberg R, Nõges P, Nõges T. 2016. Algal diet of small-bodied crustacean zooplankton in a cyanobacteria-dominated eutrophic lake. PLoS ONE 11: e0154526. [CrossRef] [PubMed] [Google Scholar]
  • Torres GS, Silva LHS, Rangel LM, Attayde JL, Huszar LM. 2015. Cyanobacteria are controlled by omnivorous filter-feeding fish (Nile tilapia) in a tropical eutrophic reservoir. Hydrobiologia 765: 115–129. [Google Scholar]
  • Tudorancea C, Fernando CH, Paggi JC. 1988. Food and feeding ecology of Oreochromis niloticus (Linnaeus) juveniles in Lake Awassa, Ethiopia. Arch Hydrobiol Suppl 78: 267–289. [Google Scholar]
  • Turker H, Eversole AG, Brune DE. 2003b. Comparative Nile tilapia and silver carp filtration rates of partitioned aquaculture system phytoplankton. Aquaculture 220: 449–457. [Google Scholar]
  • Turker H, Eversole AG, Brune DE. 2003a. Filtration of green algae and cyanobacteria by Nile tilapia, Oreochromis niloticus, in the Partitioned Aquaculture System. Aquaculture 215: 93–101. [CrossRef] [Google Scholar]
  • Vadeboncoeur Y, Carpenter LSR. 2001. Whole-lake fertilization effects on distribution of primary production between benthic and pelagic habitats. Ecology 82: 1065–1077. [CrossRef] [Google Scholar]
  • Vakkilainen K, Kairesalo T, Hietala J, et al. 2004. Response of zooplankton to nutrient enrichment and fish in shallow lakes: a pan-European mesocosme xperiment. Freshw Biol 49: 1619–1632. [CrossRef] [Google Scholar]
  • Vanni MJ, Layne CD. 1997. Nutrient recycling and herbivory as mechanisms in the“top-down” effect of fish on algae in lakes. Ecology 78: 21–40. [Google Scholar]
  • Vanni MJ. 2002. Nutrient cycling by animals in freshwater ecosystems. Annu Rev Ecol Syst 33: 341–370. [Google Scholar]
  • Vicente IST, Fonseca-Alves CE. 2013. Impact of introduced Nile tilapia (Oreochromis niloticus) on non-native aquatic ecosystems. Pak J Biol Sci 16: 121–126. [CrossRef] [PubMed] [Google Scholar]
  • Yu J, Xia M, Kong M, He H, Liu Z, Jeppesen E. 2020. A small omnivorous bitterling fish (Acheilognathus macropterus) facilitates dominance of cyanobacteria, rotifers and Limnodrilus in an outdoor mesocosm experiment. Environ Sci Pollut Res 27: 23862–23870. [CrossRef] [PubMed] [Google Scholar]
  • Zhang X, Mei X, Gulati RD, Liu Z. 2015. Effects of N and P enrichment on competition between phytoplankton and benthic algae in shallow lakes: a mesocosm study. Environ Sci Pollut Res 22: 4418–4424. [CrossRef] [PubMed] [Google Scholar]
  • Zhang X, Liu Z, Jeppesen E, Taylor WD, Rudstam LG. 2016. Effects of benthic-feeding common carp and filter-feeding silver carp on benthic-pelagic coupling: implications for shallow lake management. Ecol Eng 88: 256–264. [CrossRef] [Google Scholar]
  • Zhang X, Liu Z, Jeppesen E, Taylor WD. 2014. Effects of deposit feeding tubificid worms and filter-feeding bivalves on benthic pelagic coupling: implications for the restoration of eutrophic shallow lakes. Water Res 50: 135–146. [CrossRef] [PubMed] [Google Scholar]
  • Zhang X, Mei X, Gulati RD. 2017. Effects of omnivorous tilapia on water turbidity and primary production dynamics in shallow lakes: implications for ecosystem management. Rev Fish Biol Fish 27: 245–254. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.