Open Access
Knowl. Manag. Aquat. Ecosyst.
Number 422, 2021
Article Number 12
Number of page(s) 8
Published online 22 March 2021
  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J Mol Biol 215: 403–410. [Google Scholar]
  • Benda D, Votýpková K, Nakase Y, Straka J. 2021. Unexpected cryptic species diversity of parasites of the family Xenidae (Strepsiptera) with a constant diversification rate over time. Syst Entomol 46: 252–265. [Google Scholar]
  • Bayssade-Dufour C, Martins C, Vuong PN. 2001. Histopathologie pulmonaire d'un modèle mammifère et dermatite cercarienne humaine. Méd Maladies Infect 31: 713–722. [Google Scholar]
  • Brant SV, Loker ES. 2009. Molecular systematics of the avian schistosome genus Trichobilharzia (Trematoda: Schistosomatidae) in North America. J Parasitol 95: 941–963. [Google Scholar]
  • Cai R, Kayal E, Alves-de-Souza C, Bigeard E, Corre E, Jeanthon C, Marie D, Porcel BM, Siano R, Szymczak J, Wolf M, Guillou L. 2020. Cryptic species in the parasitic Amoebophrya species complex revealed by a polyphasic approach. Sci Rep 10: 2531. [PubMed] [Google Scholar]
  • Christiansen AO, Olsen A, Buchmann K, Kania PW, Nejsum P, Vennervald BJ. 2016. Molecular diversity of avian schistosomes in Danish freshwater snails. Parasitol Res 115: 1027–1037. [Google Scholar]
  • Caron Y, Cabaraux A, Marechal F, Losson B. 2017. Swimmer's itch in Belgium: first recorded outbreaks, molecular identification of the parasite species and intermediate hosts. Vector Borne Zoonotic Dis 17: 190–194. [PubMed] [Google Scholar]
  • Choiński A. 1991. Katalog jazior Polski: Pojezierze Pomorskie. Wydawnictwo Naukowe UAM, Poznan, 221 p. [Google Scholar]
  • Cichy A, Żbikowska E. 2016. Atlas of Digenea developmental stages: The morphological characteristics and spread within the populations of freshwater snails from the Brodnickie Lakeland, Poland. Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika, Torun, 218 p. [Google Scholar]
  • Dvořák J, Sattmann H, Horák P, Konecny R. 1999. Bird schistosomes from freshwater snails in Austria, with some notes on current problems (Digenea, Schistosomatidae). Mitt Österr Ges Tropenmed Parasitol 21: 69–76. [Google Scholar]
  • Dvořák J, Vanácová S, Hampl V, Flegr J, Horák P. 2002. Comparison of european Trichobilharzia species based on ITS1 and ITS2 sequences. Parasitology 124: 307–313. [CrossRef] [PubMed] [Google Scholar]
  • Faltýnková A. 2005. Larval trematodes (Digenea) in molluscs from small water bodies near Šeské Budšjovice, Czech Republic. Acta Parasitol 52: 49–55. [Google Scholar]
  • Faltýnková A, Nasincová V, Koblásková L. 2007. Larval trematodes (Digenea) of the great pond snail Lymnaea stagnalis (L.), (Gastropoda, Pulmonata) in central Europe: a survey of species and key to their identification. Parasite 14: 39–51. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  • Faltýnková A, Nasincová V, Koblásková L. 2008. Larval trematodes (Digenea) of planorbid snails (Gastropoda: Pulmonata) in central Europe: a survey of species and key to their identification. Syst Parasitol 69: 155–178. [CrossRef] [PubMed] [Google Scholar]
  • Faltýnková A, Haas W. 2006. Larval trematodes in freshwater molluscs from the Elbe to Danube rivers (Southeast Germany): before and today. Parasitol Res 99: 572–582. [Google Scholar]
  • Ferté H, Depaquit J, Carré S, Villena I, Léger N. 2005. Presence of Trichobilharzia szidati in Lymnaea stagnalis and T. franki in Radix auricularia in northeastern France: molecular evidence. Parasitol Res 95: 150–154. [Google Scholar]
  • Gulyás K, Soldánová M, Orosová M, Oros M. 2020. Confirmation of the presence of zoonotic Trichobilharzia franki following a human cercarial dermatitis outbreak in recreational water in Slovakia. Parasitol Res 119: 531–2537. [Google Scholar]
  • Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41: 95–98. [Google Scholar]
  • Haas W, Pietsch U. 1991. Migration of Trichobilharzia ocellata schistosomula in the duck and in the abnormal murine host. Parasitol Res 77: 642–644. [Google Scholar]
  • Hanelt B, Schmidt-Rhaesa A, Bolek MG. 2015. Cryptic species of hairworm parasites revealed by molecular data and crowdsourcing of specimen collections. Mol Phylogenet Evol 82: 211–218. [Google Scholar]
  • Horák P, Kolářová L. 2000. Survival of bird schistosomes in mammalian lungs. Int J Parasitol 30: 65–68. [Google Scholar]
  • Horák P, Kolářová L. 2001. Bird schistosomes: do they die in mammalian skin? Trends Parasitol 17: 66–69. [PubMed] [Google Scholar]
  • Horák P, Mikeš L, Lichtenbergová L, Skála V, Soldánová M, Brant SV. 2015. Avian schistosomes and outbreaks of cercarial dermatitis. Clin Microbiol Rev 28: 165–190. [PubMed] [Google Scholar]
  • Huelsenbeck JP, Ronquist F. 2001. MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17: 754–755. [CrossRef] [PubMed] [Google Scholar]
  • Huelsenbeck JP, Ronquist F, Nielsen R, Bollback JP. 2001. Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294: 2310–2314. [Google Scholar]
  • Jouet D, Ferté H, Hologne C, Kaltenbach ML, Depaquit J. 2009. Avian schistosomes in French aquatic birds: a molecular approach. J Helminthol 83: 181–189. [PubMed] [Google Scholar]
  • Kock S. 2001. Investigations of intermediate host specificity help to elucidate the taxonomic status of Trichobilharzia ocellata (Digenea: Schistosomatidae). Parasitology 123: 67–70. [PubMed] [Google Scholar]
  • Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 33: 1870–1874. [Google Scholar]
  • Lashaki EK, Teshnizi SH, Gholami S, Fakhar M, Brant SV, Dodangeh S. 2020. Global prevalence status of avian schistosomes: A systematic review with meta-analysis. Parasite Epidemiol Control 9: e00142. [PubMed] [Google Scholar]
  • Lawton SP, Lim RM, Dukes JP, Cook RT, Walker AJ, Kirk RS. 2014. Identification of a major causative agent of human cercarial dermatitis, Trichobilharzia franki (Müller and Kimmig 1994), in southern England and its evolutionary relationships with other European populations. Parasit Vectors 7: 1–10. [Google Scholar]
  • Liberato C de, Berrilli F, Bossù T, Magliano A, Di Montalbano Filippo M, Di Cave D, Sigismondi M, Cannavacciuolo A, Scaramozzino P. 2019. Outbreak of swimmer's itch in Central Italy: Description, causative agent and preventive measures. Zoonoses Public Health 66: 377–381. [CrossRef] [PubMed] [Google Scholar]
  • Loy C, Haas W. 2001. Prevalence of cercariae from Lymnaea stagnalis snails in a pond system in Southern Germany. Parasitol Res 87: 878–882. [Google Scholar]
  • Marszewska A, Cichy A, Heese T, Żbikowska E. 2016. The real threat of swimmers' itch in anthropogenic recreational water body of the Polish Lowland. Parasitol Res 115: 3049–3056. [Google Scholar]
  • Marszewska A, Strzała T, Cichy A, Dąbrowska GB, Żbikowska E. 2018. Agents of swimmer's itch-dangerous minority in the Digenea invasion of Lymnaeidae in water bodies and the first report of Trichobilharzia regenti in Poland. Parasitol Res 117: 3695–3704. [Google Scholar]
  • Nolan MJ, Cribb TH. 2005. The use and implications of ribosomal DNA sequencing for the discrimination of digenean species. Adv Parasitol 60: 101–163. [PubMed] [Google Scholar]
  • Olivier L. 1953. Observations on the migration of avian schistosomes in mammals previously unexposed to cercariae. J Parasitol 39: 237–246. [Google Scholar]
  • Piechocki A, Wawrzyniak-Wydrowska B. 2016. Guide to freshwater and marine mollusca of Poland. Bogucki Wydawnictwo Naukowe, Poznan, 280 p. [Google Scholar]
  • Prüter H, Sitko J, Krone O. 2017. Having bird schistosomes in mind-the first detection of Bilharziella polonica (Kowalewski 1895) in the bird neural system. Parasitol Res 116: 865–870. [Google Scholar]
  • Rizevsky SV, Cherviakovsky EM, Kurchenko VP. 2011. Molecular taxonomic identification of Schistosomatidae from Naroch Lake and Polonevichi Lake in Belarus. Biochem Syst Ecol 39: 14–21. [Google Scholar]
  • Rudolfová J, Hampl V, Bayssade-Dufour C, Lockyer AE, Littewood DT, Horák P. 2005. Validity reassessment of Trichobilharzia species using Lymnaea stagnalis as the intermediate host. Parasitol Res 95: 79–89. [Google Scholar]
  • Rudolfová J, Littlewood DTJ, Sitko J, Horák P. 2007. Bird schistosomes of wildfowl in the Czech Republic and Poland. Folia Parasitol 54: 88–93. [Google Scholar]
  • Soldánová M, Georgieva S, Roháčová J, Knudsen R, Kuhn JA, Henriksen EH, Siwertsson A, Shaw JC, Kuris AM, Amundsen PA, Scholz T, Lafferty KD, Kostiadinova A. 2017. Molecular analyses reveal high species diversity of trematodes in a sub-Arctic lake. Int J Parasitol 47: 327–345. [Google Scholar]
  • Selbach C, Soldánová M, Sures B. 2016. Estimating the risk of swimmer's itch in surface waters ‑ a case study from Lake Baldeney, River Ruhr. Int J Hyg Environ Health 219: 693–699. [PubMed] [Google Scholar]
  • Semyenova SK, Chrisanfova GG, Guliaev AS, Yesakova AP, Ryskov AP. 2015. Structural and population polymorphism of RT-like sequences in avian schistosomes trichobilharzia szidati (Platyhelminthes: Digenea: Schistosomatidae). Biomed Res Int 2015: 315312. [Google Scholar]
  • Soldánová M, Selbach C, Sures B, Kostadinova A, Pérez-Del-Olmo A. 2010. Larval trematode communities in Radix auricularia and Lymnaea stagnalis in a reservoir system of the Ruhr River. Parasit Vectors 3: 56. [Google Scholar]
  • Soldánová M, Selbach C, Sures B. 2016. The early worm catches the bird? Productivity and patterns of Trichobilharzia szidati cercarial emission from Lymnaea stagnalis . PLoS One 11: e0149678. [Google Scholar]
  • Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313. [CrossRef] [PubMed] [Google Scholar]
  • Sulgostowska T, Czaplińska D. 1987. Katalog Fauny Pasożyt-niczej Polski. IV. Pasożyty ptaków. 1. Pierwotniaki i przywry. PWN, Warszawa-Wrocław, 210 p. [Google Scholar]
  • Szidat L. 1930. Über Hautinfektionen bei Bluttrematoden insbesondere bei Bilharziella polonica Kow. Arch f Dermat 160: 304–308. [Google Scholar]
  • Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–4680. [CrossRef] [PubMed] [Google Scholar]
  • Tracz ES, Al-Jubury A, Buchmann K, Bygum A. 2019. Outbreak of Swimmer's Itch in Denmark. Acta Derm Venereol 99: 1116–1120. [PubMed] [Google Scholar]
  • Żbikowska E. 2002. Is there a potential danger of swimmer's itch in Poland? Parasitol Res 89: 59–62. [Google Scholar]
  • Żbikowska E. 2004. Infection of snails with bird schistosomes and the threat of swimmer's itch in selected Polish lakes. Parasitol Res 92: 30–35. [Google Scholar]
  • Żbikowska E. 2007. Digenea species in chosen populations of freshwater snails in northern and central part of Poland. Wiad Parazytol 53: 301–308. [Google Scholar]
  • Żbikowska E, Marszewska A. 2018. Thermal preferences of bird schistosome snail hosts increase the risk of swimmer's itch. J Therm Biol 78: 22–26. [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.