Open Access
Knowl. Manag. Aquat. Ecosyst.
Number 422, 2021
Article Number 11
Number of page(s) 8
Published online 18 March 2021
  • Baker HG, Stebbins GL. 1965. The genetics of colonizing species. New York: Academic Press. [Google Scholar]
  • Barrat-Segretain M. 2001. Biomass allocation in three macrophyte species in relation to the disturbance level of their habitat. Freshw Biol 46: 935–945. [Google Scholar]
  • Bellinger BJ, Davis SL. 2017. Investigating the role of water and sediment chemistry from two reservoirs in regulating the growth potential of Hydrilla verticillata (L.f.) Royle and Cabomba caroliniana A. Gray. Aquat Bot 136: 175–185. [Google Scholar]
  • Bickel TO. 2015. A boat hitchhiker's guide to survival: Cabomba caroliniana desiccation resistance and survival ability. Hydrobiologia 746: 123–134. [Google Scholar]
  • Bickel TO. 2017. Processes and factors that affect regeneration and establishment of the invasive aquatic plant Cabomba caroliniana . Hydrobiologia 788: 157–168. [Google Scholar]
  • Bosch I, Makarewicz JC, Bonk EA, Ruiz C, Valentino M. 2009. Responses of lake macrophyte beds dominated by Eurasian watermilfoil (Myriophyllum spicatum) to best management practices in agricultural sub-watersheds: Declines in biomass but not species dominance. J Great Lakes Res 35: 99–108. [Google Scholar]
  • Bowes G, Rao SK, Estavillo GM, Reiskind JB. 2002. C4 mechanisms in aquatic angiosperms: comparisons with terrestrial C4 systems. Funct Plant Biol 29: 379. [PubMed] [Google Scholar]
  • Caplan JS, Yeakley JA. 2013. Functional morphology underlies performance differences among invasive and non-invasive ruderal Rubus species. Oecologia 173: 363–374. [PubMed] [Google Scholar]
  • Dalla Vecchia A, Villa P, Bolpagni R. 2020. Functional traits in macrophyte studies: Current trends and future research agenda. Aquat Bot 167: 103290. [Google Scholar]
  • Dawson W, Fischer M, van Kleunen M. 2011. The maximum relative growth rate of common UK plant species is positively associated with their global invasiveness. Global Ecol Biogeogr 20: 299–306. [Google Scholar]
  • Dawson W, Fischer M, van Kleunen M. 2012. Common and rare plant species respond differently to fertilisation and competition, whether they are alien or native. Ecol Lett 15: 873–880. [Google Scholar]
  • Fan S, Yu H, Liu C, Yu D, Han Y, Wang L. 2015. The effects of complete submergence on the morphological and biomass allocation response of the invasive plant Alternanthera philoxeroides . Hydrobiologia 746: 159–169. [Google Scholar]
  • Gallardo B, Clavero M, Sánchez MI, Vilà M. 2016. Global ecological impacts of invasive species in aquatic ecosystems. Global Change Biol 22: 151–163. [Google Scholar]
  • Gassmann A, Cock MJW, Shaw R, Evans HC. 2006. The potential for biological control of invasive alien aquatic weeds in Europe: a review. Hydrobiologia 570: 217–222. [Google Scholar]
  • Gillard M, Thiébaut G, Rossignol N, Berardocco S, Deleu C. 2017. Impact of climate warming on carbon metabolism and on morphology of invasive and native aquatic plant species varies between spring and summer. Environ Exp Bot 144: 1–10. [Google Scholar]
  • Goldberg DE, Rajaniemi T, Gurevitch J, Stewart-Oaten A. 1999. Empirical approaches to quantifying interaction intensity: competition and facilitation along productivity gradients. Ecology 80: 1118–1131. [Google Scholar]
  • Goodenough A. 2010. Are the ecological impacts of alien species misrepresented? A review of the “native good, alien bad” philosophy. Community Ecol 11: 13–21. [Google Scholar]
  • Grotkopp E, Rejmánek M, Rost TL. 2002. Toward a causal explanation of plant invasiveness: Seedling growth and Life‐history strategies of 29 pine (Pinus) species. Am Nat 159: 396–419. [PubMed] [Google Scholar]
  • Hamilton MA, Murray BR, Cadotte MW, Hose GC, Baker AC, Harris CJ, Licari D. 2005. Life-history correlates of plant invasiveness at regional and continental scales. Ecol Lett 8: 1066–1074. [Google Scholar]
  • Hedges LV, Gurevitch J, Curtis PS. 1999. The meta-analysis of response ratios in experimental ecology. Ecology 80: 1150–1156. [Google Scholar]
  • Huang X, Shen N, Guan X, Xu X, Kong F, Liu C, Yu D. 2018. Root morphology and structure comparisons of native and introduced aquatic plant species in multiple substrates. Aquat Ecol 52: 65–76. [Google Scholar]
  • Huang X, Xu X, Guan B, Liu S, Xie H, Li Q, Li K. 2020. Transformation of aquatic plant diversity in an environmentally sensitive area, the Lake Taihu drainage basin. Front Plant Sci 11: 513788. [PubMed] [Google Scholar]
  • Hussner A, Stiers I, Verhofstad MJJM, Bakker ES, Grutters BMC, Haury J, van Valkenburg JLCH, Brundu G, Newman J, Clayton JS, Anderson LWJ, Hofstra D. 2017. Management and control methods of invasive alien freshwater aquatic plants: a review. Aquat Bot 136: 112–137. [Google Scholar]
  • Jacobs MJ, Macisaac HJ. 2009. Modelling spread of the invasive macrophyte Cabomba caroliniana . Freshw Biol 54: 296–305. [Google Scholar]
  • Jiang H, Fan Q, Li J, Shi S, Li S, Liao W, Shu W. 2011. Naturalization of alien plants in China. Biodivers Conserv 20: 1545–1556. [Google Scholar]
  • Lacoul P, Freedman B. 2006. Environmental influences on aquatic plants in freshwater ecosystems. Environ Rev 14: 89–136. [Google Scholar]
  • Li F, Zhu L, Xie Y, Jiang L, Chen X, Deng Z, Pan B. 2015. Colonization by fragments of the submerged macrophyte Myriophyllum spicatum under different sediment type and density conditions. Sci Rep 5: 11821. [PubMed] [Google Scholar]
  • Li F, Qin Y, Zhu L, Xie Y, Liang S, Hu C, Chen X, Deng Z. 2016. Effects of fragment size and sediment heterogeneity on the colonization and growth of Myriophyllum spicatum . Ecol Eng 95: 457–462. [Google Scholar]
  • Lima CTD, Santos FDAR, Giulietti AM. 2014. Morphological strategies of Cabomba (Cabombaceae), a genus of aquatic plants. Acta Bot Bras 28: 327–338. [Google Scholar]
  • Liu X, Han Y, Zhu J, Deng J, Hu W, Da Silva TEV. 2018. Will elevated atmospheric CO2 boost the growth of an invasive submerged macrophyte Cabomba caroliniana under the interference of phytoplankton? Environ Sci Pollut R 25: 1809–1821. [Google Scholar]
  • Lowe S, Browne M, Boudjelas S, De Poorter M. 2000. 100 of the World's Worst Invasive Alien Species A selection from the Global Invasive Species Database . The Invasive Species Specialist Group (ISSG) a specialist group of the Species Survival Commission (SSC) of the World Conservation Union (IUCN). [Google Scholar]
  • Mathakutha R, Steyn C, le Roux PC, Blom IJ, Chown SL, Daru BH, Ripley BS, Louw A, Greve M. 2019. Invasive species differ in key functional traits from native and non‐invasive alien plant species. J Veg Sci 30: 994–1006. [Google Scholar]
  • Michelan TS, Thomaz SM, Bando FM, Bini LM. 2018. Competitive effects hinder the recolonization of native species in environments densely occupied by one invasive exotic species. Front Plant Sci 9: 1261. [PubMed] [Google Scholar]
  • Ministry of Ecology and Environment (MEE). 2016. the List of alien invasive species in China's natural ecosystem . (in Chinese). [Google Scholar]
  • Nentwig W. 2008. Traits of a good invader. In: Nentwig W, ed. Biological Invasions. Berlin and Heidelberg: Springer-Verlag, pp. 75– 96. [Google Scholar]
  • Ørgaard M. 1991. The genus Cabomba (Cabombaceae) − a taxonomic study. Nord J Bot 11: 179–203. [Google Scholar]
  • Reshi ZA, Rasoo N, Dar PA, Rehman W, Shah MA. 2013. Impact of invasive alien plant species on aboveground and belowground species diversity in the Kashmir Himalaya, India. In: Jose S, Singh HP, Batish DR, Kohli RK, eds. Invasive Plant Ecology. Boca Raton: CRC Press. [Google Scholar]
  • Richards CL, Bossdorf O, Muth NZ, Gurevitch J, Pigliucci M. 2006. Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecol Lett 9: 981–993. [Google Scholar]
  • Scheers K, Denys L, Jacobs I, Packet J, Smeekens V, Adriaens T. 2019. Cabomba caroliniana Gray (Cabombaceae) invades major waterways in Belgium. Knowl Manag Aquat Ecosyst 420: 22. [Google Scholar]
  • Scheffer M 2004. Vegetation. In: Usher MB, DeAngelis DL, Manly BFJ, ed. Ecology of Shallow Lakes. Dordrecht: Kluwer Academic Publishers, pp. 210–288. [Google Scholar]
  • Schooler S, Julien M, Walsh GC. 2006. Predicting the response of Cabombacaroliniana populations to biological control agent damage. Aust J Entomol 45: 327–330. [Google Scholar]
  • Schooler S, Cabrera-Walsh W, Julien M. 2012. Cabomba caroliniana Gray – cabomba. In Julien MH, McFadyen RE, Cullen J, eds. Biological Control of Weeds in Australia. Collingwood: CSIRO Publishing, pp. 108–117. [Google Scholar]
  • Shen N, Yu H, Yu S, Yu D, Liu C. 2019. Does soil nutrient heterogeneity improve the growth performance and intraspecific competition of the invasive plant Myriophyllum aquaticum? Front Plant Sci 10: 723. [PubMed] [Google Scholar]
  • Smith S, Küpper FC, Trinder C, Louca V. 2021. Assessing watermilfoil invasion effects on native macrophyte communities in North American lakes using a novel approach for macrophyte sampling. Knowl Manag Aquat Ecosyst 422: 1. [Google Scholar]
  • Son D, Cho K, Lee EJ. 2017. The potential habitats of two submerged macrophytes, Myriophyllum spicatum and Hydrilla verticillata in the river ecosystems, South Korea. Knowl Manag Aquat Ecosyst 418: 58. [Google Scholar]
  • Sousa WTZ. 2011. Hydrilla verticillata (Hydrocharitaceae), a recent invader threatening Brazil's freshwater environments: a review of the extent of the problem. Hydrobiologia 669: 1–20. [Google Scholar]
  • Taihu Basin Authority (TBA). 2019. Taihu Basin & Southeast Rivers Water Resources Bulletin 2018 (in Chinese with English abstract). [Google Scholar]
  • van Kleunen M, Dawson W, Schlaepfer D, Jeschke JM, Fischer M. 2010a. Are invaders different? A conceptual framework of comparative approaches for assessing determinants of invasiveness. Ecol Lett 13: 947–958. [Google Scholar]
  • van Kleunen M, Weber E, Fischer M. 2010b. A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol Lett 13: 235–245. [Google Scholar]
  • Vilà M, Espinar JL, Hejda M, Hulme PE, Jarošík V, Maron JL, Pergl J, Schaffner U, Sun Y, Pyšek P. 2011. Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol Lett 14: 702–708. [Google Scholar]
  • Wang H, Wang Q, Bowler P, Xiong W. 2016. Invasive aquatic plants in China. Aquat Invasions 11: 1–9. [Google Scholar]
  • Wang J, Yu D, Wang Q. 2008a. Growth, biomass allocation, and autofragmentation responses to root and shoot competition in Myriophyllum spicatum as a function of sediment nutrient supply. Aquat Bot 89: 357–364. [Google Scholar]
  • Wang J, Yu D, Xiong W, Han Y. 2008b. Above- and belowground competition between two submersed macrophytes. Hydrobiologia 607: 113–122. [Google Scholar]
  • Weigelt A, Jolliffe P. 2003. Indices of plant competition. J Ecol 91: 707–720. [Google Scholar]
  • Wu H, Ding J. 2019. Global change sharpens the double-edged sword effect of aquatic alien plants in China and beyond. Front Plant Sci 10: 787. [PubMed] [Google Scholar]
  • Xu H, Ding H, Li M, Qiang S, Guo J, Han Z, Huang Z, Sun H, He S, Wu H, Wan F. 2006. The distribution and economic losses of alien species invasion to China. Biol Invasions 8: 1495–1500. [Google Scholar]
  • Yu H, Wang L, Liu C, Fan S. 2018. Coverage of native plants is key factor influencing the invasibility of freshwater ecosystems by exotic plants in China. Front Plant Sci 9: 250. [PubMed] [Google Scholar]
  • Yu J, Zhen W, Guan B, Zhong P, Jeppesen E, Liu Z. 2016. Dominance of Myriophyllum spicatum in submerged macrophyte communities associated with grass carp. Knowl Manag Aquat Ecosyst 417: 24. [CrossRef] [Google Scholar]
  • Zedler JB, Kercher S. 2004. Causes and consequences of invasive plants in wetlands: opportunities, opportunists, and outcomes. Crit Rev Plant Sci 23: 431–452. [Google Scholar]
  • Zhan A, Ni P, Xiong W, Chen Y, Lin Y, Huang X, Yang Y, Gao Y. 2017. Biological invasions in aquatic ecosystems in China. In: Wan F, Jiang M, Zhan A, eds. Biological Invasions and Its Management in China. Dordrecht: Springer, pp. 67– 96. [Google Scholar]
  • Zhang Z, van Kleunen M. 2019. Common alien plants are more competitive than rare natives but not than common natives. Ecol Lett 22: 1378–1386. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.