Issue
Knowl. Manag. Aquat. Ecosyst.
Number 420, 2019
Topical issue on Crayfish
Article Number 33
Number of page(s) 14
DOI https://doi.org/10.1051/kmae/2019024
Published online 10 July 2019
  • Abrahamsson SAA. 1966. Dynamics of an isolated population of the crayfish Astacus astacus Linné. Oikos 17: 96–107. [Google Scholar]
  • Alonso F. 2004. Dinámica de las poblaciones del cangrejo de río Austropotamobius italicus (Faxon, 1914) en el Sistema Ibérico: aplicaciones a la recuperación de la especie. Ph.D. thesis, Universidad Politécnica de Madrid, Spain. [Google Scholar]
  • Alonso F. 2011. Austropotamobius italicus (Faxon, 1914). In Verdú JR, Numa C, Galante E, eds. Atlas y Libro Rojo de los Invertebrados amenazados de España (Especies Vulnerables), Dirección General de Medio Natural y Política Forestal, Ministerio de Medio Ambiente, Madrid: Medio Rural y Marino, 651–672. [Google Scholar]
  • Alonso F, Temiño C, Diéguez-Uribeondo J. 2000. Status of the white-clawed crayfish, Austropotamobius pallipes (Lereboullet, 1858) in Spain: legislation and conservation. Knowl Manag Aquat Ecosyst 356: 31–54. [CrossRef] [Google Scholar]
  • Alonso A, Castro-Díez P. 2008. What explains the invading success of the aquatic mud snail Potamopyrgus antipodarum (Hydrobiidae, Mollusca)? Hydrobiologia 614: 107–116. [Google Scholar]
  • Arce JA, Alonso F. 2011. Factors related to the presence of the Austropotamobius pallipes (Lereboullet, 1858) species complex in calcareous mountain rivers in central Spain. Knowl Manag Aquat Ecosyst 401: 25. [CrossRef] [Google Scholar]
  • Armitage PDL, Pinder C, Cranston P. 2012. The Chironomidae: biology and ecology of non-biting midges, London: Springer-Verlag/Sci-Tech/Trade, 572 pp. [Google Scholar]
  • Aubert J. 1963. Les Plécoptères de la Péninsule Ibérique. Eos 39: 23–107. [Google Scholar]
  • Benvenuto C, Gherardi F, Ilhéu M. 2008. Microhabitat use by the white-clawed crayfish in a Tuscan stream. J Nat Hist 42: 21–33. [CrossRef] [Google Scholar]
  • Brown PB, Tazik P, Hooe ML, Blythe WG. 1990. Consumption and apparent dry matter digestibility of aquatic macrophytes by male and female crayfish (Orconectes virilis). Aquaculture 89: 55–64. [Google Scholar]
  • Burgazzi G, Guareschi S, Laini A. 2018. The role of small-scale spatial location on macroinvertebrate community in an intermittent stream. Limnetica 37: 319–340. [Google Scholar]
  • Camargo J. 2019. Positive responses of benthic macroinvertebrates to spatial and temporal reductions in water pollution downstream from a trout farm outlet. Knowl Manag Aquat Ecosyst 420: 16. [CrossRef] [Google Scholar]
  • Casas JJ. 1996. Environmental patchiness and processing of maple litter in a backwater of a mountain stream: riffle area vs debris dams. Fundam Appl Limnol 136: 489–508. [Google Scholar]
  • Chiesa S, Scalici M, Negrini R, Gibertini G, Nonnis Marzano F. 2011. Finescale genetic structure, phylogeny and systematics of threatened crayfish species complex. Mol Phylogenet Evol 61: 1–11. [Google Scholar]
  • Cole MB, Russell KR, Mabee TJ. 2003. Relation of headwater macroinvertebrate communities to in-stream and adjacent stand characteristics in managed second-growth forests of the Oregon Coast Range mountains. Can J Fish Aquat Sci 33: 1433–1443. [Google Scholar]
  • Cooper SD, Barmuta LA. 1993. Field experiments in biomonitoring. In Rosemberg DM, Resh VH, eds. Freshwater biomonitoring and benthic macroinvertebrates. London, UK: Chapman & Hall, 399–441. [Google Scholar]
  • Cooper SD, Smith DW, Bence R. 1985. Prey selection by freshwater predators with different foraging strategies. Can J Fish Aquat Sci 42: 1720–1732. [Google Scholar]
  • Cooper SD, Walde SG, Peckarsky BL. 1990. Prey exchange rates and the impact of predators on prey populations in streams. Ecology 71: 1503–1514. [Google Scholar]
  • Crowl TA, Townsend CR, Bouwes N, Thomas H. 1997. Scales and causes of patchiness in stream invertebrate assemblages: top-down predator effects? J N Am Benthol Soc 16: 277–285. [CrossRef] [Google Scholar]
  • Davic RD. 2003. Linking keystone species and functional groups: A new operational definition of the keystone species concept. Conserv Ecol 7: r11. [CrossRef] [Google Scholar]
  • Diéguez-Uribeondo J. 2006. Pathogens, parasites and ectocommensals. In Souty-Grosset C, HoldichDM, Noël PY, Reynolds JD, Haffner P, eds. Atlas of crayfish in Europe, Paris: Muséum National d'Histoire Naturelle, pp. 131–149. [Google Scholar]
  • Elliot JM. 1977. Some methods for the statistical analysis of samples of benthic invertebrates, 2nd edn. Freshwater Biological Association. Ambleside, UK: Scientific Publication, 25, 159 pp. [Google Scholar]
  • Elliot JM. 2008. The ecology of riffle beetles. Freshw Rev 1: 189–203. [Google Scholar]
  • Ferreras-Romero M, Agüero-Pelegrín M. 1994. Nymphal growth and development of Euleuctra geniculata Stephens, 1835 (Plecoptera: Leuctridae) in the Sierra Morena mountains, Southern Spain. Limnetica 10: 9–13. [Google Scholar]
  • Flecker AS, Allan JD. 1984. The importance of predation, substrate and spatial refugia in determining lotic insect distributions. Oecologia 64: 306–313. [CrossRef] [PubMed] [Google Scholar]
  • Friedrich G, Chapman D, Beim A. 1992. The use of biological material. In: Chapman D, ed. Water quality assessments, London: WHO-UNESCO, 171–238. [Google Scholar]
  • Füreder L. 2006. Indigenous crayfish habitat and threats. In Souty-Grosset C, Holdich DM, Noël PY, ReynoldsJD, Haffner P, eds. Atlas of crayfish in Europe, Paris: Muséum National d'Histoire Naturelle, 25–47. [Google Scholar]
  • García-Arberas L, Rallo A, Antón A. 2009. The future of the indigenous freshwater crayfish Austropotamobius italicus in Basque Country streams: Is it possible to survive being an inconvenient species? Knowl Manag Aquat Ecosyst 19: 394–395. [Google Scholar]
  • Geiger W, Alcorlo P, Baltanás A, Montes C. 2005. Impact of an introduced Crustacean on the trophic webs of Mediterranean wetlands. Biol Invasions 7: 49–73. [Google Scholar]
  • Haddaway NR, Wilcox RH, Heptonstall RE, Griffiths HM, Mortimer RJ, Christmas M, Dunn AM. 2012. Predatory functional response and prey choice identify predation differences between native/invasive and parasitised/unparasitised crayfish. PLoS ONE 7: e32229. [CrossRef] [PubMed] [Google Scholar]
  • Hansen GJA, Hein CL, Roth BM, Vander Zanden MJ, Gaeta JW, Latzka AW, Carpenter SR. 2013. Food web consequences of long-term invasive crayfish control. Can J Fish Aquat Sci 70: 1109–1122. [Google Scholar]
  • Hill AM, Sinars DM, Lodge DM. 1993. Invasion of an occupied niche by the crayfish Orconectes rusticus: potential importance of growth and mortality. Oecologia 94: 303–306. [CrossRef] [PubMed] [Google Scholar]
  • Holdich DM. 2002. Background and functional morphology. In: Holdich DM, ed. Biology of Freshwater Crayfish. UK: Blackwell Science Ltd, 3–29. [Google Scholar]
  • Holdich DM, Haffner P, Noël PY. 2006. Species files. In Souty-Grosset C, Holdich DM, Noël PY, Reynolds JD, Haffner P, eds. Atlas of crayfish in Europe. Paris: Muséum National d'Histoire Naturelle, pp.49–129. [Google Scholar]
  • Ilg C, Castella E, Lods-Crozet B, Marmonier P. 2001. Invertebrate drift and physico-chemical variables in the tributaries of the Mutt, a Swiss glacial stream. Fundam Appl Limnol 151: 335–352. [CrossRef] [Google Scholar]
  • Ilhéu M, Bernardo JM. 1993. Experimental evaluation of food preferences of red swamp crayfish, Procambarus clarkii: vegetal versus animal. Freshw Crayfish 9: 359–364. [Google Scholar]
  • Ilhéu M, Bernardo JM. 1995. Trophic ecology of red swamp crayfish Procambarus clarkii (Girard): preferences and digestibility of plant foods. Freshw Crayfish 10: 132–139. [Google Scholar]
  • Leung ES, Rosenfeld JS, Bernhardt JR. 2009. Habitat effects on invertebrate drift in a small trout stream: implications for prey availability to drift-feeding fish. Hydrobiologia 623: 113–125. [Google Scholar]
  • Larson ER, Twardochleb LA, Olden JD. 2017. Comparison of trophic function between the globally invasive crayfishes Pacifastacus leniusculus and Procambarus clarkii . Limnology 18: 275–286. [Google Scholar]
  • Lodge DM, Kershner MW, Aloi JE, Covich A. 1994. Effects of an omnivorous crayfish (Orconectes rusticus) on a freshwater littoral food web. Ecology 75: 1265–1281. [Google Scholar]
  • Luttenton MR, Horgan MJ, Lodge DM. 1998. Effects of three Orconectes crayfishes on epilithic microalgae: a laboratory experiment. Crustaceana 71: 845–855. [Google Scholar]
  • Mathers KL, Chadd RP, Dumbar MJ, Extence MA, Reeds J, Rice SP, Wood PJ. 2016. The long-term effects of invasive signal crayfish (Pacifastacus leniusculus) on instream macroinvertebrate communities. Sci Total Environ 556: 207–218. [CrossRef] [PubMed] [Google Scholar]
  • Mathews P. 2010. Sample size calculations: Practical methods for engineers and scientists. Mathews Malnar and Bailey, Inc., 338 p. [Google Scholar]
  • Matthews M, Reynolds JD, Keatinge MJ. 1993. Macrophyte reduction and benthic community alteration by the crayfish Austropotamobius pallipes (Lereboullet). Freshw Crayfish 9: 289–299. [Google Scholar]
  • Mills CD, Clark PF, Morrit D. 2016. Flexible prey handling, preference and a novel capture technique in invasive, subadult Chinese mitten crabs. Hydrobiologia 773: 135–147. [Google Scholar]
  • Momot WT. 1995. Redefining the role of crayfish in aquatic ecosystems. Rev Fish Sci 3: 33–63. [CrossRef] [Google Scholar]
  • Nijboer NC, Verdonschot PFM. 2004. Rare and common macroinvertebrates: Definition of distribution classes and their boundaries. Fundam Appl Limnol 161: 45–64. [Google Scholar]
  • Nyström P. 2002. Ecology. In: Holdich DM, ed. Biology of freshwater crayfish, UK: Blackwell Science Ltd, 192–235. [Google Scholar]
  • Nyström P, Granélli W. 1996. The effect of food availability on survival, growth, activity and the number of mature females in crayfish populations. Freshw Crayfish 11: 170–181. [Google Scholar]
  • Olsen DA, Townsend CR. 2005. Flood effects on invertebrates, sediments and particulate organic matter in the hyporheic zone of a gravel-bed stream. Freshw Biol 50: 839–853. [Google Scholar]
  • Olsson K, Nyström P, Stenroth P, Nilsson E, Svensson M, Granéli W. 2008. The influence of food quality and availability on trophic position, carbon signature, and growth rate of an omnivorous crayfish. Can J Fish Aquat Sci 65: 2293–2304. [Google Scholar]
  • Parkyn SM, Rabeni CF, Collier KJ. 1997. Effects of crayfish (Paranephrops planifrons: Parastacidae) on in-stream processes and benthic faunas: a density manipulation experiment. N Z J Mar Freshw Res 31: 685–692. [CrossRef] [Google Scholar]
  • Peckarsky BL. 1996. Predator-prey interactions. In Hauer FR, Lamberti GA, eds. Methods in stream ecology. London, UK: Academic Press, pp.431–451. [Google Scholar]
  • Peh KSH, Lewis SL, Lloyd J. 2011. Mechanisms of monodominance in diverse tropical tree-dominated systems. J Ecol 99: 891–898. [Google Scholar]
  • Perry WR, Lodge DM, Lamberti GA. 1997. Impact of crayfish predation on exotic zebra mussels and native invertebrates in a lake-outlet stream. Can J Fish Aquat Sci 54: 120–125. [Google Scholar]
  • Peterson BJ, Wollheim WM, Mulholland PJ, Webster JR, Meyer JL, Tank JL, Marti E, Bowden WB, Valett HM, Hershey AE, McDowell WH, Dodds WK, Hamilton SK, Gregory S, Morrall DD. 2001. Control of nitrogen export from watersheds by headwater streams. Science 292: 86–90. [Google Scholar]
  • Puig MA. 1984. Distribution and ecology of the stoneflies (Plecoptera) in Catalonian Rivers (NE-Spain). Ann Limnol 20: 75–80. [Google Scholar]
  • Reice SR. 1991. Effects of detritus loading and fish predation on leafpack breakdown and benthic macroinvertebrates in a woodland stream. J N Am Benthol Soc 10: 42–56. [CrossRef] [Google Scholar]
  • Resh VH, Jackson JK. 1993. Rapid assessment approaches to biomonitoring using benthic macroinvertebrates. In Rosemberg DM, Resh VH, eds. Freshwater biomonitoring and benthic macroinvertebrates. London, UK: Chapman and Hall, 195–233. [Google Scholar]
  • Reynolds JD, Souty-Grosset C, Richardson A. 2013. Ecological roles of crayfish in freshwater and terrestrial habitats. Freshw Crayfish 19: 197–218. [Google Scholar]
  • Reynoldson TB, Wright JF. 2000. The reference condition: problems and solutions. In Wright JF, Sutcliffe DV, Furse MT, eds. Assessing the biological quality of fresh waters: RIVPACS and others techniques. Ambleside, Cumbria, UK: Freshwater Biological Association, pp. 293–303. [Google Scholar]
  • Rodrígues-Captulo A, Muñoz I, Bonada N, Gaudes A, Tomanova S. 2009. La biota de los ríos. In Elosegi A, Sabater S, eds. Conceptos y técnicas en ecología fluvial. Bilbao: Fundación BBVA, 253–270. [Google Scholar]
  • Rodríguez CF, Bécares E, Fernández-Aláez M, Fernández-Aláez C. 2005. Loss of diversity and degradation of wetlands as a result of introducing exotic crayfish. Biol Invasions 7: 75–85. [Google Scholar]
  • Rosewarne PJ, Mortimer RJG, Newton RJ, Grocock G, Wing CD, Dunn AM. 2016. Feeding behaviour, predatory functional responses and trophic interactions of the invasive Chinese mitten crab (Eriocheir sinensis) and signal crayfish (Pacifastacus leniusculus). Freshw Biol 61: 426–443. [Google Scholar]
  • Sih A, Bolnick DI, Luttbeg B, Borrock JL, Peacor SD, Pintor LM, Preisser E, Rehage JS, Vonesh JR. 2010. Predator-prey naïveté, antipredator behavior, and the ecology of predator invasions. Oikos 119: 610–621. [Google Scholar]
  • Sokal RR, Rohlf FJ. 1995. Biometry: the principles and practice of statistics in biological research, 3rd ed. New York: W.H. Freeman, 887 pp. [Google Scholar]
  • Taylor NG, Dunn AM. 2018. Predatory impacts of alien decapod Crustacea are predicted by functional responses and explained by differences in metabolic rate. Biol Invasions 20: 2821–2837. [Google Scholar]
  • Townsend CR, Hildrew AG. 1994. Species traits in relation to a habitat template for river systems. Freshw Biol 31: 265–275. [Google Scholar]
  • Twardochleb LA, Olden JD, Larson ER. 2013. A global metaanalysis of the ecological impacts of nonnative crayfish. Freshw Sci 32: 1367–1382. [Google Scholar]
  • Usio N, Townsend CR. 2002. Functional significance of crayfish in stream food webs: roles of omnivory substrate heterogeneity and sex. Oikos 98: 512–522. [Google Scholar]
  • Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE. 1980. The River Continuum Concept. Can J Fish Aquat Sci 37: 130–137. [Google Scholar]
  • Wallace JB, Eggert SL, Meyer JL, Webster JR. 1997. Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science 277: 102–104. [Google Scholar]
  • Warner GF. 1995. Choice and consumption of aquatic weeds by signal crayfish (Pacifastacus leniusculus). Freshw Crayfish 8: 360–363. [Google Scholar]
  • Warner GF. 1997. Factors affecting the selection of pond snail prey by signal crayfish. Freshw Crayfish 11: 194–202. [Google Scholar]
  • Wendler F, Biss R, Chucholl C. 2015. Population ecology of endangered white-clawed crayfish (Austropotamobius pallipes s. str.) in a small rhithral river in Germany. Knowl Manag Aquat Ecosyst 416: 24. [CrossRef] [Google Scholar]
  • Whitledge GW, Rabeni CF. 1997. Energy sources and ecological role of crayfishes in an Ozark stream: insights from stable isotopes and gut analysis. Can J Fish Aquat Sci 54: 2555–2563. [Google Scholar]
  • Williams DD, Feltmate BW. 1992. Aquatic insects. CAB International. UK: Wallingford [Google Scholar]
  • Williams DD, Hynes HBN. 1976. The recolonization mechanisms of stream benthos. Oikos 27: 265–272. [Google Scholar]
  • Woodiwiss FS. 1978. Biological water assessment methods. UK: Severn-Trent River Authorities, 53 p. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.