Open Access
Knowl. Manag. Aquat. Ecosyst.
Number 420, 2019
Article Number 32
Number of page(s) 6
Published online 24 June 2019
  • Asaeda T, Sultana M, Manatunge J, Fujino T. 2004. The effect of epiphytic algae on the growth and production of Potamogeton perfoliatus L. in two light conditions. Environ Exp Bot 52: 225–238. [Google Scholar]
  • Carignan R, Kalff J. 1980. Phosphorus sources for aquatic weeds: Water or sediments?. Science 207: 987–989. [Google Scholar]
  • Crowl TA, McDowell WH, Covich AP, Johnson SL. 2001. Freshwater shrimp effects on detrital processing and nutrients in a tropical headwater stream. Ecology 82: 775–783. [Google Scholar]
  • Daldorph PWG, Thomas JD. 1995. Factors influencing the stability of nutrient-enriched freshwater macrophyte communities: The role of sticklebacks Pungitius pungitius, and freshwater snails. Freshw Biol 33: 271–289. [Google Scholar]
  • Englund RA, Cai Y. 1999. The occurrence and description of Neocaridina denticulata sinensis (Kemp, 1918) (Crustacea: Decapoda: Atyidae), a new introduction to the Hawaiian Islands. Bish Mus Occas Pap 58: 58–65. [Google Scholar]
  • Geddes P, Trexler JC. 2003. Uncoupling of omnivore-mediated positive and negative effects on periphyton mats. Oecologia 136: 585–595. [CrossRef] [PubMed] [Google Scholar]
  • Hough RA, Fornwall MD, Negele BJ, Thompson RL, Puttet DA. 1989. Plant community dynamics in a chain of lakes: Principal factors in the decline of rooted macrophytes with eutrophication. Hydrobiologia 173: 199–217. [Google Scholar]
  • Jaynes ML, Carpenter SR. 1986. Effects of vascular and nonvascular macrophytes on sediment redox and solute dynamics. Ecology 67: 875–882. [Google Scholar]
  • Jeppesen E, Søndergaard M, Mortensen E, Kristensen P. 1990. Fish manipulation as a lake restoration tool in shallow, eutrophic temperate lakes 1: Cross-analysis of three Danish case-studies. Hydrobiologia 200/201: 205–218. [Google Scholar]
  • Jiang J, Wen F, Deng S, Yan Y. 2010. Population dynamics, annual production and trophic basis analysis of the dominant species Neocaridina denticulata sinensis (Kemp) in Hujiaxi Stream. Acta Hydrobiol Sin 3: 569–574. [CrossRef] [Google Scholar]
  • Jin X, Tu Q. 1990. The standard methods for observation and analysis in lake eutrophication, 2nd ed. Beijing, China: Chinese Environmental Science Press. [Google Scholar]
  • Jones JI, Sayer CD. 2003. Dose the fish-invertebrate-periphyton cascade precipitate plant loss in shallow lakes? Ecology 84: 2155–2167. [Google Scholar]
  • Jones JI, Young JO, Eaton JW, Moss B. 2002. The influence of nutrient loading, dissolved inorganic carbon and higher trophic levels on the interaction between submerged plants and periphyton. J Ecology 90: 12–24. [CrossRef] [Google Scholar]
  • Jupp BP, Spence DHN. 1977. Limitations on macrophytes in a eutrophic lake, Loch Leven: I. Effects of phytoplankton. J Ecology 65: 175–186. [CrossRef] [Google Scholar]
  • Li C, Li Y, Xie Q, Pen C. 1990. A study on the maximum sustained yield of the macrura's shrimp in the Poyang Lake and its development, utilization. Jiangxi Sci 8: 28–33. [Google Scholar]
  • Li K, Liu Z, Gu B. 2008. Persistence of clear water in a nutrient-impacted region of Lake Taihu: The role of periphyton grazing by snails. Fundam Appl Limnol/Arch Hydrobiol 173: 15–20. [CrossRef] [Google Scholar]
  • Liu Z, Hu J, Zhong P, Zhang X, Ning J, Larsen SE, Chen D, Gao Y, He Hu, Jeppesen E. 2018. Successful restoration of a tropical shallow eutrophic lake: Strong bottom-up but weak top-down effects recorded. Water Res 146: 88–97. [CrossRef] [PubMed] [Google Scholar]
  • Moulton TP, Souza ML, Brito EF, Braga MRA, Bunn SE. 2012. Strong interactions of Paratya australiensis (Decapoda: Atyidae) on periphyton in an Australian subtropical stream. Mar Freshw Res 63: 834–844. [Google Scholar]
  • Oh CW, Ma CW, Hartnoll RG, Suh HL. 2003. Reproduction and population dynamics of the temperate freshwater shrimp, Neocaridina denticulata denticulata (De Haan, 1844), in a Korean stream. Crustaceana 76(8): 993–1015. [Google Scholar]
  • Phillips G, Willby N, Moss B. 2016. Submerged macrophyte decline in shallow lakes: What have we learnt in the last forty years? Aquat Bot 135: 37–45. [Google Scholar]
  • Pringle CM, Blake GA, Covich AP, Buzby KM, Finley A. 1993. Effects of omnivorous shrimp in a montane tropical stream: Sediment removal, disturbance of sessile invertebrates and enhancement of understory algal biomass. Oecologia 93: 1–11. [CrossRef] [PubMed] [Google Scholar]
  • Rao W, Ning J, Zhong P, Jeppesen E, Liu Z. 2015. Size-dependent feeding of omnivorous nile tilapia in a macrophyte-dominated lake: Implications for lake management. Hydrobiologia 749: 125–134. [Google Scholar]
  • Sand-Jensen K, Borum J. 1984. Epiphyte shading and its effect on photosynthesis and diel metabolism of Lobelia dortmanna L. during the spring bloom in a Danish lake. Aquat Bot 20: 109–119. [Google Scholar]
  • SEPA. 2002. Analytical methods for water and wastewater monitor, 4th ed. Beijing, China: Chinese Environmental Science Press. [Google Scholar]
  • Souza ML, Moulton TP. 2005. The effects of shrimps on benthic material in a Brazilian island stream. Freshw Biol 50: 592–602. [Google Scholar]
  • Sultana M, Asaeda T, Azim ME, Fujino T. 2010. Morphological responses of a submerged macrophyte to epiphyton. Aquat Ecol 44: 73–81. [CrossRef] [Google Scholar]
  • Takahashi M, Ikeda T. 1975. Excretion of ammonia and inorganic phosphorus by Euphausia pacifica and Metridia pacifica at different concentrations of phytoplankton. J Fish Board Can 32(11): 2189–2195. [CrossRef] [Google Scholar]
  • van Donk E, van de Bund WJ. 2002. Impact of submerged macrophytes including charophytes on phyto-and zooplankton communities: Allelopathy versus other mechanisms. Aquat Bot 72: 261–274. [CrossRef] [Google Scholar]
  • Weiperth A, Gabris V, Danyik T, Farkas A, Kurikova P, Patoka J, Kouba A. 2019. Occurrence of non-native red cherry shrimp in European temperate waterbodies: A case study from Hungary. Knowl Manag Aquat Ecosyst 420: 9. [CrossRef] [Google Scholar]
  • Wetzel RG. 2001. Limnology: Lake and river ecosystems. 3rd Ed. San Diego, USA: Academic Press, p. 1006, ISBN: 9780127447605. [Google Scholar]
  • Yam RSW, Dudgeon D. 2005. Stable isotope investigation of food use by Caridina spp. (Decapoda: Atyidae) in Hong Kong streams. J North Am Benthol Soc 24: 68–81. [CrossRef] [Google Scholar]
  • Ye J. 2017. The effects of Atyid shrimp on periphytic algae, Vallisneria natans and water quality. Thesis of Master of Sciences, Jinan University, Guangzhou, China. [Google Scholar]
  • Yu J, Liu Z, Li K, Chen F, Guan B, Hu Y, Zhong P, Tang Y, Zhao X, He H, Zeng H, Jeppesen E. 2016. Restoration of shallow lakes in subtropical and tropical China: Response of nutrients and water clarity to bio-manipulation by fish removal and submerged plant transplantation. Water 8: 438. [CrossRef] [Google Scholar]
  • Zhang L, Li K, Liu Z, Middelburg JJ. 2010. Sedimented cyanobacterial detritus as a source of nutrient for submerged macrophytes (Vallisneria spiralis and Elodea nuttallii): An isotope labeling experiment using 15N. Limnol Oceanogr 55: 1912–1917. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.