Open Access
Knowl. Managt. Aquatic Ecosyst.
Number 413, 2014
Article Number 09
Number of page(s) 16
Published online 21 March 2014
  • Aarestrup K., Jepsen J., Koed A. and Pedersen S., 2003. Movement and mortality of stocked brown trout in a stream. J. Fish Biol., 66, 721–728. [Google Scholar]
  • Acreman M. and Ferguson A., 2010. Environmental flows and the European water framework directive. Fresh. Biol., 55, 32–48. [Google Scholar]
  • Almodóvar A., Nicola, G.G., Ayllón D. and Elvira B., 2012. Global warming threatens the persistence of Mediterranean brown trout. Glob. Chang. Biol., 18, 1549–1560. [Google Scholar]
  • Alvarez D. and Nicieza A., 2003. Predator avoidance behaviour in wild and hatchery-reared brown trout: the role of experience and domestication. J. Fish Biol., 63, 1565–1571. [CrossRef] [Google Scholar]
  • Armstrong J.D. and Nislow K.H., 2012. Modelling approaches for relating effects of change in river flow to populations of Atlantic salmon and brown trout. Fish. Manag. Ecol., 19, 527–536. [CrossRef] [Google Scholar]
  • Armstrong J.D., Kemp P.S., Kennedy G.J.A., Ladle M. and Milner N.J., 2003. Habitat requirements of Atlantic salmon and brown trout in rivers and streams. Fish. Res., 62, 143–170. [CrossRef] [Google Scholar]
  • Bachman R.A., 1984. Foraging behaviour of free-ranging wild and hatchery brown trout in a stream. Trans. Am. Fish. Soc., 113, 1–32. [Google Scholar]
  • Bagliniere J.L. and Champigneulle A., 1982. Population-density of brown trout (Salmo-trutta-L) and Atlantic salmon (Salmo-salar L) juveniles on the river Scorff (Brittany) – habitat selection and annual variations (1976–1980). Acta Oecologica-Oecologia Applicata, 3, 241–256. [Google Scholar]
  • Bain M.B. and Jia H., 2012. A habitat model for fish communities in large streams and small rivers. Int. J. Ecol., 1–8. [Google Scholar]
  • Bain M.B. and Stevenson N.J., 1999. Aquatic habitat assessment: common methods. Bethesda, Maryland: American Fisheries Society. [Google Scholar]
  • Bardonnet A. and Heland M., 1994. The influence of potential predators on the habitat preference of emerging brown trout. J. Fish Biol., Suppl. A, 131–142. [Google Scholar]
  • Bell V.A., Elliott J.M. and Moore R.J., 2000. Modelling the effects of drought on the population of brown trout in Black Brows Beck. Ecol. Model., 127, 141–159. [CrossRef] [Google Scholar]
  • Bohlin T., 1977. Habitat selection and intercohort competition of juvenile sea-trout Salmo-trutta. Oikos, 29, 112–117. [CrossRef] [Google Scholar]
  • Bovee K.D., 1986. Development and evaluation of habitat criteria for use in instream flow incremental methodology. In: Instream flow information paper 21 US Fish and Wildlife Service (FWS/OBS/86/07). Fort Collins. [Google Scholar]
  • Bovee K.D., Lamb B.L., Barthalow J.M., Stalnaker C.B., Taylor J. and Henriksen J., 1998. Stream habitat analysis using the Instream Flow Incremental Methodology. In: US Geological Survey Biological Resources Discipline Information and Technology Report USGS/BRD–1998–0004. Fort Collins. [Google Scholar]
  • Brookes A., 1987. The distribution and management of channelised streams in Denmark. Regulated Rivers: Research and Management, 1, 3–16. [Google Scholar]
  • Clausen B. and Jensen J.L., 1994. CALQ – A new program to calculate the river discharge. In: Nordic Hydrological Conference, Thorshavn, Faroe Islands, 24 August 1994. NHP–report, (34), 525–532. [Google Scholar]
  • Commission E., 2000. Directive 2000/60/EC. Establishing a framework for community action in the field of water policy In: European Commission PE–CONS 3639/1/100 Rev 1. Luxembourg. [Google Scholar]
  • Conallin J., 2009. Instream Physical Habitat Suitability Modelling in Danish small lowland streams: The development of Habitat Suitability Indices for juvenile brown trout (Salmo trutta). Ph.D. Thesis. Department of Environment, Social and Spatial Change (ENSPAC), Roskilde University, Denmark. [Google Scholar]
  • Conallin J., Boegh E. and Jensen J.K., 2010a. Instream physical habitat modeling types: an analysis as stream hydromorphological modelling tools for EU water resource managers. Int. J. River Basin Management, 8, 93–107. [CrossRef] [Google Scholar]
  • Conallin J., Olsen M., Boegh E., Jensen J.K. and Pedersen S., 2010b. Habitat suitability indices development in Denmark: are international indices applicable under small lowland stream conditions? Int. J. River Basin Management, 8, 151–160. [CrossRef] [Google Scholar]
  • Conallin J.C., Jyde M., Filrup K. and Pedersen S., 2012. Shelter use of juvenile brown trout (Salmo trutta) under laboratory conditions in Denmark. Knowl. Managt. Aquatic Ecosyst., 404, 1–6. [Google Scholar]
  • Cunjak R.A. and Power G., 1986. Winter habitat utilization by stream resident brook trout (Salvelinus-fontinalis) and brown trout (Salmo-trutta). Can. J. Fish. Aquat. Sci., 43, 1970–1981. [CrossRef] [Google Scholar]
  • Dunbar M., Ibbotson A., Gowing I., McDonnell N., Acreman M. and Pinder A., 2001. Further validation of PHABSIM for the habitat requirements of salmonid fish. In: R&D Report W6–036. Centre for Ecology and Hydrology, UK. [Google Scholar]
  • Edmondson W.T. and Winberg G.G., 1971. A manual on methods for the assessment of secondary productivity in fresh waters. Oxford, Blackwell. [Google Scholar]
  • Egglishaw H.J. and Shackley P.E., 1982. Influence of water depth on dispersion of juvenile salmonids, Salmo-salar L and Salmo-trutta–L, in a Scottish stream. J. Fish Biol., 21, 141–155. [CrossRef] [Google Scholar]
  • Elliott J.M. 2000. Pools as refugia for brown trout during two summer droughts: Trout responses to thermal and oxygen stress. J. Fish Biol., 56, 938–948. [CrossRef] [Google Scholar]
  • Elliott J.M., Hurley M.A. and Elliott J.A. 1997. Variable effects of droughts on the density of a sea–trout Salmo trutta population over 30 years. J. Appl. Ecol., 34, 1229–1238. [CrossRef] [Google Scholar]
  • Falke J.A., Fausch K.D., Magelky R., Aldred A., Durnford D.S., Riley L. K. and Oad R. 2011. The role of groundwater pumping and drought in shaping ecological futures for stream fishes in a dryland river basin of the western Great Plains, USA. Ecohydrology, 4, 682–697. [CrossRef] [Google Scholar]
  • Friberg N., Baattrup–Pedersen A., Pedersen M. and Skriver J., 2005. The new Danish stream monitoring programme (NOVANA) – Preparing monitoring activities for the water framework directive era. Environmental Monitoring and Assessment, 111, 27–42. [CrossRef] [PubMed] [Google Scholar]
  • Giroux F., Ovidio M., Philippart J.C. and Baras E., 2000. Relationship between the drift of macroinvertebrates and the activity of brown trout in a small stream. J. Fish Biol., 56, 1248–1257. [CrossRef] [Google Scholar]
  • Greenberg L., Svendsen P. and Harby A., 1996. Availability of microhabitats and their use by brown trout (Salmo trutta) and grayling (Thymallus thymallus) in the River Vojman, Sweden, 287–303. [Google Scholar]
  • Gries G. and Juanes F., 1998. Microhabitat use by juvenile Atlantic salmon (Salmo salar) sheltering during the day in summer. Can. J. Zool. Rev. Can. Zool., 76, 1441–1449. [CrossRef] [Google Scholar]
  • Gwiazda R. and Amirowicz A., 2006. Selective foraging of Grey Heron (Ardea cinerea) in relation to density and composition of the littoral fish community in a submontane dam reservoir. Waterbirds, 29, 226–232. [CrossRef] [Google Scholar]
  • Heggenes J., 1988a. Effect of experimentally increased intraspecific competition on sedentary adult brown trout (Salmo-trutta) movement and stream habitat choice. Can. J. Fish. Aquat. Sci., 45, 1163–1172. [CrossRef] [Google Scholar]
  • Heggenes J., 1988b. Effects of short–term flow fluctuations on displacement of, and habitat use by, brown trout in a small stream. Trans. Am. Fish. Soc., 117, 336–344. [CrossRef] [Google Scholar]
  • Heggenes J., 1988c. Physical habitat selection by brown trout (Salmo trutta) in riverine systems. Nordic J. Fresh. Resources, 64, 74–90. [Google Scholar]
  • Heggenes J., 1988d. Substrate preferences of brown trout fry (Salmo-trutta) in artificial stream channels. Can. J. Fish. Aquat. Sci., 45, 1801–1806. [CrossRef] [Google Scholar]
  • Heggenes J., 2002. Flexible summer habitat selection by wild, allopatric brown trout in lotic environments. Trans. Am. Fish. Soci., 131, 287–298. [CrossRef] [Google Scholar]
  • Heggenes J. and Dokk JG., 2001. Contrasting temperatures, waterflows, and light: Seasonal habitat selection by young Atlantic salmon and brown trout in a boreonemoral river. Regulated Rivers-Research & Management, 17, 623–635. [CrossRef] [Google Scholar]
  • Heggenes J. and Saltveit S.J., 1990. Seasonal and spatial microhabitat selection and segregation in young Atlantic salmon, Salmo-salar L, and brown trout, Salmo-trutta L, in a Norwegian river. J. Fish Biol., 36, 707–720. [CrossRef] [Google Scholar]
  • Heggenes J. and Traaen T., 1988. Downstream migration and critical water velocities in stream channels for fry of 4 salmonid species. J. Fish Biol., 32, 717–727. [CrossRef] [Google Scholar]
  • Heggenes J., Krog O.M.W., Lindas O.R., Dokk J.G. and Bremnes T., 1993. Homeostatic behavioral-responses in a changing environment – brown trout (Salmo-trutta) become nocturnal during winter. J. Anim. Ecol., 62, 295–308. [CrossRef] [Google Scholar]
  • Heggenes J., Braband S.J. and Saltveit, 1991. Microhabitat use by brown trout, Salmo trutta L. and Atlantic salmon, S. salar L., in a stream: a comparative study of underwater and river bank observations. J. Fish Biol., 38, 259–266. [CrossRef] [Google Scholar]
  • Heggenes J., Saltveit J. and Lingaas O., 1996. Predicting fish habitat use to changes in water flow: Modelling critical minimum flows for Atlantic salmon, Salmo salar, and brown trout, S-trutta. River Res. Appl., 12, 331–344. [CrossRef] [Google Scholar]
  • Heggenes J., Bagliniere J.L. and Cunjak R.A., 1999. Spatial niche variability for young Atlantic salmon (Salmo salar) and brown trout (S. trutta) in heterogenous streams. Ecol. Fresh. Fish, 8, 1–21. [Google Scholar]
  • Heggenes J., Saltveit S.J., Bird D., Grew R., 2002. Static habitat partitioning and dynamic selection by sympatric young Atlantic salmon and brown trout in south–west England streams. J. Fish Biol., 60, 72–86. [CrossRef] [Google Scholar]
  • Henriksen H.J., Troldborg L., Hojberg A.L. and Refsgaard J.C., 2008. Assessment of exploitable groundwater resources of Denmark by use of ensemble resource indicators and a numerical groundwater-surface water model. J. Hydrol., 348, 224–240. [CrossRef] [Google Scholar]
  • Hermansen H. and Krog C., 1984. Influence of physical factors on density of stocked brown trout (Salmo-trutta-fario L) in a Danish lowland stream. Fisheries Managt., 15, 107–115. [Google Scholar]
  • Hubert W.A., Harris D.D. and Wesche T.A., 1994. Diurnal shifts in use of summer habitat by age-0 brown trout in a regulated mountain stream. Hydrobiologia, 284, 147–156. [CrossRef] [Google Scholar]
  • Huusko A. and Yryana T., 1997. Effects of instream enhancement structures on brown trout, Salmo trutta L. habitat availability in a channelized boreal river: a PHABSIM approach. Fish. Managt. Ecol., 4, 453–466. [CrossRef] [Google Scholar]
  • Jepsen N., Sonnesen P., Klenke R. and Bregnballe T., 2010. The use of coded wire tags to estimate cormorant predation on fish stocks in an estuary. Mar. Freshw. Biol., 61, 320–329. [CrossRef] [Google Scholar]
  • Jepsen N., Skov C. and Pedersen S., 2013. Overview of the effects of predation on freshwater fish stocks. Report for Technical University of Denmark – AQUA, National Institute of Aquatic Resources, Department of Inland Fisheries. [Google Scholar]
  • Jonsson B. and Jonsson N., 2011. Habitat Use. In: Jonsson B. and Jonsson N. (eds.), Ecology of Atlantic Salmon and Brown Trout. Fish & Fisheries Series Volume 33, 2011, pp. 67–135. DOI 10.1007/978–94–007–1189–1. [Google Scholar]
  • Karlstroem 1977. Habitat selection and population densities of salmon (Salmo salar L.) and trout (Salmo trutta L.) parr in Swedish rivers with some references to human activities. Acta Universitatis Upsaliensis, 404, 1–12. [Google Scholar]
  • Kennedy G.J.A. and Strange C.D., 1982. The distribution of salmonids in upland streams in relation to depth and gradient. J. Fish Biol., 20, 579–591. [CrossRef] [Google Scholar]
  • Knapp R.A. and Preisler H.K., 1999. Is it possible to predict habitat use by spawning salmonids? A test using California golden trout (Oncorhynchus mykiss aguabonita). Can. J. Fish. Aquat. Sci., 56, 1576–1584. [CrossRef] [Google Scholar]
  • Kondolf G.M., 2000. Assessing salmonid spawning gravel quality. Trans. Am. Fish. Soc., 129, 262–281. [CrossRef] [Google Scholar]
  • Krebs C.J., 1998. Ecological Methodology, Second edition edition. Benjamin Cummings. [Google Scholar]
  • Maki-Petays A., Muotka T., Huusko A., Tikkanen P., Kreivi P., 1997. Seasonal changes in habitat use and preference by juvenile brown trout, Salmo trutta, in a northern boreal river. Can. J. Fish. Aquat. Sci., 54, 520–530. [Google Scholar]
  • Maki-Petays A., Muotka T. and Huusko A., 1999. Densities of juvenile brown trout (Salmo trutta) in two subarctic rivers: assessing the predictive capability of habitat preference indices. Can. J. Fish. Aquat. Sci., 56, 1420–1427. [CrossRef] [Google Scholar]
  • Mortensen E., 1977. Density–dependent mortality of trout fry (Salmo-trutta L) and its relationship to management of small streams. J. Fish Biol., 11, 613–617. [CrossRef] [Google Scholar]
  • Mortensen E., 1982. Production of trout, Salmo-trutta, in a Danish stream. Environ. Biol. Fishes, 7, 349–356. [CrossRef] [Google Scholar]
  • Mortensen E., 1985. Population and energy dynamics of trout Salmo-trutta in a small Danish stream. J. Anim. Ecol., 54, 869–882. [CrossRef] [Google Scholar]
  • Naslund I., 1989. Effects of habitat improvement on brown trout Salmo trutta L., population of a northern Swedish stream. Aquaculture and Fisheries Management, 30, 463–474. [Google Scholar]
  • Nislow K.H. and Armstrong J.D., 2012. Towards a life–history–based management framework for effects on flow on juvenile salmonids in streams and rivers. J. Fish. Managt. Ecol., 19, 451–463. [CrossRef] [Google Scholar]
  • Olsen M., Boegh E., Pedersen S. and Pedersen M.F., 2009. Impact of groundwater abstraction on physical habitat of brown trout (Salmo trutta) in a small Danish stream. Hydrol. Res., 40, 394–405. [CrossRef] [Google Scholar]
  • Olsen M., Troldborg L., Henriksen H.J., Conallin J., Refsgaard H.C. and Boegh E., 2013. Evaluation of a typical hydrological model in relation to environmental flows. J. Hydrol., 507, 52–62. [CrossRef] [Google Scholar]
  • Orpwood J.E., Griffiths S.W. and Armstrong J.D., 2006. Effects of food availability on temporal activity patterns: safety first for salmon in summer. J. Fish Biol., 67, 272–273. [Google Scholar]
  • Parasiewicz P., 2007. Using MesoHABSIM to develop reference habitat template and ecological management scenarios. River Research and Applications, 23, 924–932. [CrossRef] [Google Scholar]
  • Parasiewicz P. and Dunbar M.J., 2001. Physical habitat modelling for fish – a developing approach. Large Rivers, 12, 239–268. [Google Scholar]
  • Power M.E., 1987. Predator avoidance by grazing fishes in temperate and tropical streams: importance of stream depth and prey size, p. 333–351. In: Kerfoot W.C. and Sih A. (eds.), Predation: direct and indirect impacts on aquatic communities. Hanover: Univ. Press, New England. [Google Scholar]
  • Procopio N.A., 2012. The effect of streamflow reductions on aquatic habitat availability and fish and macroinvertebrate assemblages in coastal plain streams. Ecohydrology, 5, 306–315. [CrossRef] [Google Scholar]
  • Quinn G.P. and Keough M.J., 2006. Experimental Design and Data analysis for Biologists. Cambridge: Cambridge University Press. [Google Scholar]
  • Riley W.D., Ives M.J., Pawson M.G, Maxwell D.L., 2006. Seasonal variation in habitat use by salmon, Salmo salar, trout, Salmo trutta and grayling, Thymallus thymallus, in a chalk stream. Fish. Managt. Ecol., 13, 221–236. [CrossRef] [Google Scholar]
  • Rincon P.A. and Loboncervia J., 1993. Microhabitat use by stream–resident brown trout – bioenergetic consequences. Transactions of the American Fisheries Society, 122, 575–587. [CrossRef] [Google Scholar]
  • Rosenfeld J., 2003. Assessing the habitat requirements of stream fishes: An overview and evaluation of different approaches. Trans. Am. Fish. Soc., 132, 953–968. [CrossRef] [Google Scholar]
  • Roussel J.M., Bardonnet A., 2002. The habitat of juvenile brown trout (Salmo trutta L.) in small streams: Preferences, movements, diel and seasonal variations. Bulletin Francais De La Pêche Et De La Pisciculture, 365–66, 435–454. [CrossRef] [EDP Sciences] [Google Scholar]
  • Sand–Jensen K. and Friberg N., 2006. Streams and their future inhabitants. In: Sand–Jensen K. Friberg N. and Murphy J. (eds.), Running Waters, Silkeborg, Denmark, Schultz Grafisks. [Google Scholar]
  • Scruton D.A., Scruton Clarke K.D., Ollerhead L.M.N., Perry D., McKinley R.S., Alfredsen K. and Harby A., 2002. Use of telemetry in the development and application of biological criteria for habitat hydraulic modeling. Hydrobiologia, 483, 71–82. [CrossRef] [Google Scholar]
  • Shuler S.W., Nehring B.R. and Fausch K.D., 1994. Diel habitat selection of brown trout in the Rio Grande River, Colorado, after placement of boulders. North American J. Fish. Managt., 14, 99–111. [Google Scholar]
  • Sundbaum K. and Naslund I., 1998. Effects of woody debris on the growth and behaviour of brown trout in experimental stream channels. Can. J. Zool. Rev. Can. Zool., 76, 56–61. [CrossRef] [Google Scholar]
  • Thorn P. and Conallin J.C., 2006. RHYHABSIM as a stream management tool: Case study in the River Kornerup Catchment, Denmark. The Journal of Transdisciplinary Environmental Studies, 5, 1–17. [Google Scholar]
  • Vehanen T., Bjerke P.L., Heggenes J., Huusko A. and Maki–Petays A., 2000. Effect of fluctuating flow and temperature on cover type selection and behaviour by juvenile brown trout in artificial flumes. J. Fish Biol., 56, 923–937. [CrossRef] [Google Scholar]
  • Vezza P., Parasiewicz P., Rosso M. and Comoglio C., 2012. Defining minimum environmental flows at a regional scale: Applications of mesoscale habitat model and catchment classification. River Research and Application, 28, 717–730. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.