Open Access
Issue
Knowl. Managt. Aquatic Ecosyst.
Number 413, 2014
Article Number 10
Number of page(s) 8
DOI https://doi.org/10.1051/kmae/2014008
Published online 21 April 2014
  • Akçakaya H.R. andSjögren-Gulve P., 2000. Population viability analyses in conservation planning: an overview. Ecol. Bul., 48, 9–21. [Google Scholar]
  • Alos J., Palmer M., Alonso-Fernandez A. and Morales-Nin B., 2010. Individual variability and sex-related differences in the growth of Diplodus annularis(Linnaeus, 1758). Fish. Res., 101, 60–69. [CrossRef] [Google Scholar]
  • Bagenal T.B. and Tesch F.W., 1978. Age and Growth. In: Bagenal T.B. (ed.), Methods for the assessment of fish production in fresh waters. IBP Handbook No 3 (3rd edn). Blackwell, Oxford, 365 p. [Google Scholar]
  • Campana S.E., 1990. How reliable are growth back-calculation based on otoliths? Can. J. Fish. Aquat. Sci., 47, 2219–2227. [CrossRef] [Google Scholar]
  • Carlin B.P. and Louis T.A., 2000. Bayes and Empirical Bayes methods for data analysis. In: Texts in statistical science. Chapman & Hall, New York, 419 p. [Google Scholar]
  • Cavalli L.,Pech N. andChappaz R., 2003. Diet and growth of the endangered Zingel asper in the Durance river. J. Fish Biol., 63, 460–471. [CrossRef] [Google Scholar]
  • Danancher D.,Labonne J.,Gaudin P. andJoly P., 2007. Scales measurements as a conservation tool in endangered Zingel asper (Linnaeus, 1758). Aquat. Conserv.: Mar. Freshwat. Ecosyst., 17, 712–723. [CrossRef] [Google Scholar]
  • Francis R.I.C.C., 1990. Back-calculation of fish length: a critical review. J. Fish Biol., 36, 883–902. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Fry F.E.J., 1943. A method for the calculation of the growth of fishes from scale measurements. Publ. Ont. Fish Res. Lab., 61, 5–18. [Google Scholar]
  • Gelman A. and Hill J., 2007. Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press, 610 p. [Google Scholar]
  • Geweke J., 1992. Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. In: Bayesian Statistics 4, Oxford University Press, 876 p. [Google Scholar]
  • Helser T.E., Lai H-L., andBlack B.A., 2012. Bayesian hierarchical modeling of pacific geoduck growth increment data and climate indices. Ecol. Model., 247, 210–220. [CrossRef] [Google Scholar]
  • Lunn D.J.,Thomas A.,Best N. andSpiegelhalter D., 2000. WinBUGS – a Bayesian modelling framework: concepts, structure, and extensibility. Stat. Comput., 10, 325–337. [CrossRef] [Google Scholar]
  • Morita K. and Matsuishi T., 2001. A new model of growth back-calculation incorporating age effect based on otoliths. Can. J. Fish. Aquat. Sci., 58, 1805–1811. [CrossRef] [Google Scholar]
  • Ntzoufras I., 2009. Bayesian modeling using WinBUGS: An Introdution. Wiley Series in Computational Statistics, 520 p. [Google Scholar]
  • Parent E. and Rivot E., 2012. Introduction to Hierarchical Bayesian Modeling for Ecological Data. CRC Press, Boca Raton, 405 p. [Google Scholar]
  • Pinheiro J.C. and Bates D.M., 2001. Mixed Models in S and S-Plus, 2nd edn, NY: Springer Verlag, 530 p. [Google Scholar]
  • Robert C.P., 2001. The Bayesian choice, 2nd edn. Springer texts in statistics, New York, Springer-Verlag, 605 p. [Google Scholar]
  • Robert C.P. and Casella G., 1999. Monte Carlo statistical methods. Springer texts in statistics, New York, Springer-Verlag, 420 p. [Google Scholar]
  • Royle J.A. and Dorazio R.M., 2008. Hierarchical Modeling and Inference in Ecology: the Analysis of Data from Populations, Metapopulations and Communities. Academic Press, New York, 445 p. [Google Scholar]
  • Schofield M.R.,Barker R.J. andTaylor P., 2013. Modelling individual specific fish length from capture-recapture data using the von Bertalanffy growth curve. Biometrics, 69, 1012–1021. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Sigourney D.B., Munch S.B. and Letcher B.H., 2012. Combining a Bayesian nonparametric method with a hierarchical framework to estimate individual and temporal variation in growth. Ecol. Model., 247, 125–134. [CrossRef] [Google Scholar]
  • Vigliola L., Harmelin-Vivien M. and Meekan M.G., 2000. Comparison of techniques of back-calculation of growth and settlement marks from the otoliths of three species of diplodus from the Mediterranean Sea. Can. J. Fish. Aquat. Sci., 57, 1291–1299. [CrossRef] [Google Scholar]
  • Weatherley A.H. and Gill H.S., 1987. The biology of fish growth. Academic Press, London, 443 p. [Google Scholar]
  • Weisberg S.,Spangler G. andRichmond L.S., 2010. Mixed effects models for fish growth. Can. J. Fish. Aquat. Sci., 67, 269–277. [CrossRef] [Google Scholar]
  • Wilson J.A.,Vigliola L. andMeekan M.G., 2009. The back-calculation of size and growth from otolith: Validation and comparison of models at an individual level. J. Exp. Mar. Biol. Ecol., 368, 9-21. [CrossRef] [Google Scholar]
  • Zhang Z.Y., Hamagami F., Wang L.J., Nesselroade J.R. and Grimm K.J., 2007. Bayesian analysis of longitudinal data using growth curve models. Int. J. Behav. Dev., 31, 374–383. [CrossRef] [Google Scholar]
  • Zhang Z.Y., Lessard J. and Campbell A., 2009. Use of Bayesian hierarchical models to estimate northern abalone, Haliotis kamtschatkana, growth parameters from tag-recapture data. Fish. Res., 95, 289−295. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.