Knowl. Manag. Aquat. Ecosyst.
Number 425, 2024
Management of habitats and populations/communities
Article Number 10
Number of page(s) 11
Published online 15 May 2024
  • Adams SM, Arts MT, Wainman BC. 1999. Ecological role of lipids in the health and success of fish populations. New York: Lipids in Freshwater Ecosystems, Springer, pp. 132–160. [Google Scholar]
  • Ahlgren G, Blomqvist P, Boberg M, Gustafsson IB. 1994. Fatty acid content of the dorsal muscle—an indicator of fat quality in freshwater fish. J Fish Biol 45: 131–157. [Google Scholar]
  • Ahlgren G, Carlstein M, Gustafsson IB. 1999. Effects of natural and commercial diets on the fatty acid content of European grayling. J Fish Biol 55: 1142–1155. [Google Scholar]
  • Allan JD, Wipfli MS, Caouette JP, Prussian A, Rodgers J. 2003. Influence of streamside vegetation on inputs of terrestrial invertebrates to salmonid food webs. Can J Fish Aquat Sci 60: 309–320. [Google Scholar]
  • Appelqvist LÅ. 1968. Rapid methods of lipid extraction and fatty acid methyl ester preparation for seed and leaf tissue: with special remarks on preventing the accumulation of lipid contaminants.Ark Kemi. Almqvist and Wiksell. [Google Scholar]
  • Arts MT, Kohler CC. 2009. Health and condition in fish: the influence of lipids on membrane competency and immune response. In Kainz M, Brett MT, Arts MT, eds. Lipids in Aquatic Ecosystems New York, NY: Springer, pp. 237–256. [Google Scholar]
  • Bachman RA. 1984. Foraging behavior of free-ranging wild and hatchery brown trout in a stream. Trans Am Fish Soc 113: 1–32. [Google Scholar]
  • Basen T, Ros A, Chucholl C, Oexle S, Brinker A. 2022. Who will be where: climate driven redistribution of fish habitat in southern Germany. PLOS Climate 1: e0000006. [Google Scholar]
  • Baxter CV, Fausch KD, Carl Saunders W. 2005. Tangled webs: reciprocal flows of invertebrate prey link streams and riparian zones. Freshw Biol 50: 201–220. [Google Scholar]
  • Bermejo-Poza R, Villarroel M, Pérez C, González de Chavarri E, Díaz MT, Torrent F, De la Fuente J. 2020. Fasting combined with long catch duration modifies the physio-metabolic response and flesh quality of rainbow trout. Aquaculture Res 51: 1244–1255. [Google Scholar]
  • Blake BF. 1977. Food and feeding of the mormyrid fishes of Lake Kainji, Nigeria, with special reference to seasonal variation and interspecific differences. J Fish Biol 11: 315–328. [Google Scholar]
  • Carlstein M, Eriksson LO. 1996. Post-stocking dispersal of European grayling, Thymallus thymallus (L.), in a semi-natural experimental stream. Fish Manage Ecol 3: 143–155. [Google Scholar]
  • Carlstein M. 1997. Effects of rearing technique and fish size on post-stocking feeding, growth and survival of European grayling, Thymallus thymallus (L.). Fish Manage Ecol 4: 391–404. [Google Scholar]
  • Cho CY, Kaushik SJ. 1990. Nutritional energetics in fish: energy and protein utilization in rainbow trout (Salmo gairdneri). In: World Review of Nutrition and Dietetics, pp. 132–172. [Google Scholar]
  • Czesny S, Rinchard J, Abiado MAG, Dabrowski K. 2003. The effect of fasting, prolonged swimming, and predator presence on energy utilization and stress in juvenile walleye (Stizostedion vitreum). Physiol Behav 79: 597–603. [Google Scholar]
  • Einen O, Waagan B, Thomassen MS. 1998. Starvation prior to slaughter in Atlantic salmon (Salmo salar): I. Effects on weight loss, body shape, slaughter- and fillet-yield, proximate and fatty acid composition. Aquaculture 166: 85–104. [Google Scholar]
  • Einum S, Fleming I. 2001. Implications of stocking: Ecological interactions between wild and released Salmonids. Nordic J Freshw Res 75: 56–70. [Google Scholar]
  • Ersbak K, Haase BL. 1983. Nutritional deprivation after stocking as a possible mechanism leading to mortality in stream-stocked brook trout. N Am J Fish Manag 3: 142–151. [Google Scholar]
  • Fraser DJ, Weir LK, Bernatchez L, Hansen MM, Taylor EB. 2011. Extent and scale of local adaptation in salmonid fishes: review and meta-analysis. Heredity 106: 404–420. [Google Scholar]
  • Gladyshev MI, Sushchik NN, Makhutova ON, Kalachova GS, Malyshevskaya KK. 2012. Differences in fatty acid composition of food and tissues of grayling from the Yenisei River. Dokl Biochem Biophys 445: 194–196. [Google Scholar]
  • Gladyshev MI, Sushchik NN, Tolomeev AP, Dgebuadze YY. 2018. Meta-analysis of factors associated with omega-3 fatty acid contents of wild fish. Rev Fish Biol Fish 28: 277–299. [Google Scholar]
  • Glyzina O, Dzyuba EV, Latyshev NA, Smirnov VV, Fedorova GA, Glyzin AV, Basharina TN. 2009. Lipid status and fatty acid spectrum of the black baikalian grayling thymallus arcticus baicalensis dybowski, 1874. Chem Sustain Dev 17 (1): 15–20. [Google Scholar]
  • Hara A, Radin NS. 1978. Lipid extraction of tissues with a low toxicity solvent. Anal Biochem 90: 420–426. [Google Scholar]
  • Hellawell JM. 1971. The food of the grayling Thymallus thymallus (L.) of the River Lugg, Herefordshire. J Fish Biol 3: 187–197. [Google Scholar]
  • Hixson SM, Sharma B, Kainz MJ, Wacker A, Arts MT. 2015. Production, distribution, and abundance of long-chain omega-3 polyunsaturated fatty acids: a fundamental dichotomy between freshwater and terrestrial ecosystems. Environ Rev 23: 414–424. [Google Scholar]
  • Horká P, Horký P, Randák T, Turek J, Rylková K, Slavík O. 2015. Radio-telemetry shows differences in the behaviour of wild and hatchery-reared European grayling Thymallus thymallus in response to environmental variables. J Fish Biol 86: 544–557. [Google Scholar]
  • Hyslop EJ. 1980. Stomach contents analysis—a review of methods and their application. J Fish Biol 17: 411–429. [Google Scholar]
  • Jezierska B, Hazel JR, Gerking SD. 1982. Lipid mobilization during starvation in the rainbow trout, Salmo gairdneri Richardson, with attention to fatty acids. J Fish Biol 21: 681–692. [Google Scholar]
  • Jobling M, Johansen SJS, Foshaug H, Burkow IC, Jørgensen EH. 1998. Lipid dynamics in anadromous Arctic charr, Salvelinus alpinus (L.): seasonal variations in lipid storage depots and lipid class composition. Fish Physiol Biochem 18: 225–240. [Google Scholar]
  • Kaitaranta JK, Linko RR. 1984. Fatty acids in the roe lipids of common food fishes. Comp Biochem Physiol B 79: 331–334. [Google Scholar]
  • Kaur G, Cameron-Smith D, Garg M, Sinclair AJ. 2011. Docosapentaenoic acid (22:5n-3): A review of its biological effects. Prog Lipid Res 50: 28–34. [Google Scholar]
  • Krepski T, Czerniawski R. 2019. Can we teach a fish how to eat? The impact of bottom and surface feeding on survival and growth of hatchery-reared sea trout parr (Salmo trutta trutta L.) in the wild. Plos one 14: e0222182. [Google Scholar]
  • Kruzhylina S, Didenko A. 2011. Autumn diet and trophic relations of juvenile brown trout (Salmo trutta), rainbow trout (Ocorhynchus mykiss) and European grayling (Thymallus thymallus) in the Shipot river (Ukraine). Transylv Rev Syst Ecol Res 11: 169–181. [Google Scholar]
  • Le HD, Meisel JA, de Meijer VE, Gura KM, Puder M. 2009. The essentiality of arachidonic acid and docosahexaenoic acid. Prostaglandins Leukot Essent Fatty Acids 81: 165–170. [Google Scholar]
  • Lin H, Romsos DR, Tack PI, Leveille GA. 1977. Influence of diet on in vitro and in vivo rates of fatty acid synthesis in coho salmon (Oncorhynchus Kisutch (Walbaum)). J Nutr 107: 1677–1682. [Google Scholar]
  • Makhutova ON, Stoyanov KN. 2021. Fatty acid content and composition in tissues of Baikal grayling (Thymallus baicalensis), with a special focus on DHA synthesis. Aquaculture Int 29: 2415–2433. [Google Scholar]
  • Meier AH, Burns JT. 1976. Circadian Hormone Rhythms in Lipid Regulation. Am Zool 16: 649–659. [Google Scholar]
  • Mráz J, Pickova J. 2009. Differences between lipid content and composition of different parts of fillets from crossbred farmed carp (Cyprinus carpio). Fish Physiol Biochem 35: 615–623. [Google Scholar]
  • Olsen RE, Henderson RJ, Ringø E. 1991. Lipids of arctic charr, Salvelinus alpinus (L.) I. Dietary induced changes in lipid class and fatty acid composition. Fish Physiol Biochem 9: 151–164. [Google Scholar]
  • Olsen Y. 1999. Lipids and essential fatty acids in aquatic food webs: what can freshwater ecologists learn from mariculture? New York, NY: Lipids Freshwater Ecosystems Springer, pp. 161–202. [Google Scholar]
  • Pilecky M, Mathieu-Resuge M, Závorka L, Fehlinger L, Winter K, Martin-Creuzburg D, Kainz MJ. 2022. Common carp (Cyprinus carpio) obtain omega-3 long-chain polyunsaturated fatty acids via dietary supply and endogenous bioconversion in semi-intensive aquaculture ponds. Aquaculture 561: 738731. [Google Scholar]
  • Rader RB. 1997. A functional classification of the drift: traits that influence invertebrate availability to salmonids. Can J Fish Aquat Sci 54: 1211–1234. [Google Scholar]
  • Radforth I. 1940. The food of the grayling (Thymallus thymallus), flounder (Platichthys flesus), roach (Rutilus rutilus) and gudgeon (Gobio fluviatilis), with special reference to the Tweed watershed. J Anim Ecol 9: 302–318. [Google Scholar]
  • Sheridan MA. 1994. Regulation of lipid metabolism in poikilothermic vertebrates. Comp Biochem Physiol B 107: 495–508. [Google Scholar]
  • Sushchik NN, Gladyshev MI, Kalachova GS, Makhutova ON, Ageev AV. 2006. Comparison of seasonal dynamics of the essential PUFA contents in benthic invertebrates and grayling Thymallus arcticus in the Yenisei river. Comp Biochem Physiol B 145: 278–287. [Google Scholar]
  • Sushchik NN, Gladyshev MI, Kalachova GS. 2007. Seasonal dynamics of fatty acid content of a common food fish from the Yenisei river, Siberian grayling, Thymallus arcticus. Food Chem 104: 1353–1358. [Google Scholar]
  • Thorfve S, Carlstein M. 1998. Post-stocking behaviour of hatchery-reared European grayling, Thymallus thymallus (L.), and brown trout, Salmo trutta L., in a semi-natural stream. Fish Manag Ecol 5: 147–159. [Google Scholar]
  • Thorfve S. 2002. Impacts of in-stream acclimatization in post-stocking behaviour of European grayling in a Swedish stream. Fish Manag Ecol 9: 253–260. [Google Scholar]
  • Tocher DR. 2003. Metabolism and Functions of Lipids and Fatty Acids in Teleost Fish. Rev Fish Sci 11: 107–184. [Google Scholar]
  • Turek J, Randák T, Horký P, Z̆Lábek V, Velíšek J, Slavík O, Hanák R. 2010. Post-release growth and dispersal of pond and hatchery-reared European grayling Thymallus thymallus compared with their wild conspecifics in a small stream. J Fish Biol 76: 684–693. [Google Scholar]
  • Turek J, Horký P, Zlábek V, Velisek J, Slavik O, Randák T. 2012. Recapture and condition of pond-reared, and hatchery-reared 1+ European grayling stocked in addition to wild conspecifics in a small river. Knowl Manag Aquatic Ecosyst 405: 10. [Google Scholar]
  • Turek J, Zlábek V, Velíšek J, Lepič P, Červený D, Randák T. 2018. Influence of geographic origin on post-stocking survival and condition of European grayling (Thymallus thymallus) in a small river. Aquat Living Resour 31: 29. [Google Scholar]
  • Twining CW, Brenna JT, Lawrence P, Winkler DW, Flecker AS, Hairston, Jr., NG. 2019. Aquatic and terrestrial resources are not nutritionally reciprocal for consumers. Funct Ecol 33: 2042–2052. [Google Scholar]
  • Umino T, Nakagawa H, Takaba M. 1991. Lipid Accumulation and Starvation Tolerance in Young Red Sea Bream. Nippon Suisan Gakkaishi 57: 1897–1902. [Google Scholar]
  • Weber LP, Higgins PS, Carlson RI, Janz DM. 2003. Development and validation of methods for measuring multiple biochemical indices of condition in juvenile fishes. J Fish Biol 63: 637–658. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.