Issue |
Knowl. Manag. Aquat. Ecosyst.
Number 425, 2024
Development of biological and environmental indicators and indices, testing and use
|
|
---|---|---|
Article Number | 11 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/kmae/2024007 | |
Published online | 04 June 2024 |
- AFNOR. 2004. Qualité de l’eau − Détermination de l’indice poissons rivières (IPR). Association française de normalisation, Norme T90–344. [Google Scholar]
- Blanchet S, Tedesco PA. 2021. French vote for river barriers defies biodiversity strategy. Nature 594: 26. [CrossRef] [PubMed] [Google Scholar]
- Carvalho L, Mackay EB, Cardoso AC, Annette Baattrup-Pedersen A, Birk S, et al. 2019. Protecting and restoring Europe’s waters: An analysis of the future development needs of the Water Framework Directive. Sci Total Environ 658: 1228–1238. [CrossRef] [PubMed] [Google Scholar]
- Comte L, Grenouillet G. 2013. Do stream fish track climate change? Assessing distribution shifts in recent decades across France. Ecography 36: 1236–1246. [CrossRef] [Google Scholar]
- Comte L, Buisson LT, Daufresne M, Grenouillet G. 2013. Climate induced changes in the distribution of freshwater fish: observed and predicted trends. Freshw Biol 58: 625–639. [CrossRef] [Google Scholar]
- Daufresne M, Roger MC, Capra H, Lamouroux N. 2003. Long-term changes within the invertebrate and fish communities of the Upper Rhône River: effects of climatic factors. Glob Change Biol 10: 124–140. [Google Scholar]
- Denys GPJ, Dettai A, Persat H, Daszkiewicz P, Hautecœur M, Keith P. 2020. Revision of phoxinus in France with the description of two new species (Teleostei, Leuciscidae). Cybium 44: 205–237. [Google Scholar]
- Dudgeon D. 2019. Multiple threats imperil freshwater biodiversity in the Anthropocene. Curr Biol 29: 960–966. [Google Scholar]
- Dézerald O, Mondy CP, Demsky S, Kreutzenberger K, Reyjol Y, Chandesris A, Velette L, Brosse S, Toussaint A, Belliard J, Merg M-L, Usseglio-Poletera P. 2020. A diagnosis-based approach to assess specific risks of river degradation in a multiple pressure context: Insights from fish communities. Sci Total Environ 734: 139467 [CrossRef] [PubMed] [Google Scholar]
- EEA. 2018. Assessment of status and pressures 2018. EEA Report No 7/2018. European Environment Agency Retrieved from. https://www.eea.europa.eu/publications/stateof-water#tab-data-References [Google Scholar]
- Grizzetti B, Vigiak O, Udias A, Aloe A, Zanni M et al. 2021. How EU policies could reduce nutrient pollution in European inland and coastal waters. Glob Environ Change 69: 102281. [CrossRef] [PubMed] [Google Scholar]
- Haase P, Bowler DE, Baker NJ, Bonada N, Domisch S, et al. 2023. The recovery of European freshwater biodiversity has come to a halt. Nature 620: 582–588. [CrossRef] [PubMed] [Google Scholar]
- Herlihy AT, Sifneos JC, Hughes RM, Peck DV, Mitchell RM. 2020. The relation of lotic fish and benthic macroinvertebrate condition indices to environmental factors across the conterminous USA. Ecol Indic 112: 105958. [CrossRef] [Google Scholar]
- Ihaka R, Gentleman R. 1996. R: A language for data analysis and graphics. J Comput Graph Stat 5: 299–314. [Google Scholar]
- Irz P, Mondy C, Richard B, Bonnafoux L. 2023. aspe: An R package to analyse and visualise river fish data in France. R package version 0.4.0. https://github.com/PascalIrz/aspe/ [Google Scholar]
- Irz P, Vigneron T, Poulet N, Cosson E, Point T, Baglinière E, Porcher J-P. 2022. A long-term monitoring database on fish and crayfish species in French rivers. Knowl Manag Aquat Ecosyst 423: 25. [CrossRef] [EDP Sciences] [Google Scholar]
- Keith P, Poulet N, Denys G, Changeux T, Feunteun E, Persat H, Eds. 2020. Les poissons d’eau douce de France. Muséum national d’histoire naturelle. Inventaire et biodiversité. Biotope Editions (Mèze), 704pp. [Google Scholar]
- Kendall MG. 1975. Rank correlation methods. London: Griffin. [Google Scholar]
- Knouft JH, Ficklin DL. 2017. The potential impacts of climate change on biodiversity in flowing freshwater systems. Annu Rev Ecol Evol Syst 48: 111–133. [Google Scholar]
- Mann HB. 1945. Nonparametric tests against trend. Econometrica 13: 245. [CrossRef] [Google Scholar]
- Mantyka-Pringle CS, Martin TG, Moffatt DB, Linke S, Rhodes JR. 2014. Understanding and predicting the combined effects of climate change and land-use change on freshwater macroinvertebrates and fish. J Appl Ecol 51: 572–581. [CrossRef] [Google Scholar]
- Oberdorff T. 2022. Time for decisive actions to protect freshwater ecosystems from global changes. Knowl Manag Aquat Ecosyst 423: 19. [Google Scholar]
- Oberdorff T, Pont D, Hugueny B, Chessel D. 2001. A probabilistic model characterizing fish assemblages of French rivers: A framework for environmental assessment: Predicting riverine fish assemblages. Freshw Biol 46: 399–415. [CrossRef] [Google Scholar]
- Oberdorff T, Pont D, Hugueny B, Porcher J-P. 2002. Development and validation of a fish-based index for the assessment of “river health” in France. Freshw Biol 47: 1720–1734. [CrossRef] [Google Scholar]
- Poikane S, Kelly MG, Salas Herrero F, Pitt J-A, Jarvie HP, Claussen U, Leujak W, Lyche Solheim A, Teixeira H, Phillips G. 2019. Nutrient criteria for surface waters under the European Water Framework Directive: Current state-of-the-art, challenges and future outlook. Sci Total Environ 695: 133888. [CrossRef] [PubMed] [Google Scholar]
- Sen PK. 1968. Estimates of the regression coefficient based on Kendall’s Tau. J Am Stat Assoc 63: 1379–1389. [CrossRef] [Google Scholar]
- Seyedhashemi H, Vidal JP, Diamond JS, Thiéry D, Monteil C, et al. 2022. Regional, multi-decadal analysis on the Loire River basin reveals that stream temperature increases faster than air temperature. Hydrol Earth Syst Sci 26: 2583–2603. [CrossRef] [Google Scholar]
- Seyedhashemi H, Moatar F, Vidal JP, Thiéry D. 2023. Past and future discharge and stream temperature at high spatial resolution in a large European basin (Loire basin, France). Earth Syst Sci Data 15: 2827–2839. [CrossRef] [Google Scholar]
- Sinclair JS, Welti EAR, Altermatt F, Alvares-Cabria M, Aroviita J, et al. 2024. Multi-decadal improvements in the ecological quality of European rivers are not consistently reflected in biodiversity metrics. Nat Ecol Evol 8: 430–441. [CrossRef] [PubMed] [Google Scholar]
- Theil H. 1950. A rank-invariant method of linear and polynomial regression analysis. Indagationes Mathematicae 12: 173. [Google Scholar]
- Tison-Rosbery J, Leboucher T, Archaimbolt V, Belliard J, Carayon D, et al. 2022. Decadal biodiversity trends in rivers reveal recent community rearrangements. Sci Total Environ 823: 153431 [CrossRef] [PubMed] [Google Scholar]
- Van damme D, Bogutskaya N, Hoffmann RC, Smith C. 2007. The introduction of the European bitterling (Rhodeus amarus) to west and central Europe. Fish Fisheries 8: 79–106. [CrossRef] [Google Scholar]
- Wang F, Shao W, Yu H, Kan G, He X, et al. 2020. Re-evaluation of the power of the Mann-Kendall test for detecting monotonic trends in hydrometeorological time series. Front Earth Sci 8: 14. [CrossRef] [Google Scholar]
- Yue S, Pilon P. 2004. A comparison of the power of t test, Mann-Kendall and bootstrap tests for trend detection. Hydrol Sc J 49: 21–37. [CrossRef] [Google Scholar]
- Yue S, Wang C. 2004. The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resour Manag 18: 201–218. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.