Knowl. Manag. Aquat. Ecosyst.
Number 425, 2024
Anthropogenic impact on freshwater habitats, communities and ecosystem functioning
Article Number 9
Number of page(s) 20
Published online 03 May 2024
  • Alberdi A, Aizpurua O, Bohmann K, Gopalakrishnan S, Lynggaard C, Nielsen M, Gilbert MTP. 2019. Promises and pitfalls of using high‐throughput sequencing for diet analysis. Mol Ecol Resour 19: 327–348. [Google Scholar]
  • Ando H, Fujii C, Kawanabe M, Ao Y, Inoue T, Takenaka A. 2018. Evaluation of plant contamination in metabarcoding diet analysis of a herbivore. Sci Rep 8: 15563. [Google Scholar]
  • Armitage PD, Hawczak A, Blackburn JH. 2012. Tyre track pools and puddles − Anthropogenic contributors to aquatic biodiversity. Limnologica 42: 254–263. [Google Scholar]
  • Bailey M, Petrie SA, Badzinski SS. 2008. Diet of mute swans in lower Great Lakes coastal marshes. J Wildl Manage 72: 726–732. [Google Scholar]
  • Baxter CV, Fausch KD, Carl Saunders W. 2005. Tangled webs: Reciprocal flows of invertebrate prey link streams and riparian zones. Freshw Biol 50: 201–220. [Google Scholar]
  • Berry O, Bulman C, Bunce M, Coghlan M, Murray DC, Ward RD. 2015. Comparison of morphological and DNA metabarcoding analyses of diets in exploited marine fishes. Mar Ecol Prog Ser 540: 167–181. [Google Scholar]
  • Billerman SM, Keeney BK, Rodelwald PG, Schulenberg TS. 2022. Birds of the World. Ithaca, NY, USA: Cornell Laboratory of Ornithology. [Google Scholar]
  • Boyer S, Cruickshank RH, Wratten SD. 2015. Faeces of generalist predators as “biodiversity capsules”: A new tool for biodiversity assessment in remote and inaccessible habitats. Food Webs 3: 1–6. [Google Scholar]
  • Brinkhof M. 1997. Seasonal variation in food supply and breeding success in European Coots Fulica atra. Ardea 85: 51–65. [Google Scholar]
  • Brochet A-L, Mouronval J-B, Aubry P, Gauthier-Clerc M, Green AJ, Fritz H, Guillemain M. 2012. Diet and feeding habitats of Camargue dabbling ducks: What has changed since the 1960s? Waterbirds 35: 555–576. [Google Scholar]
  • Brown DS, Jarman SN, Symondson WOC. 2012. Pyrosequencing of prey DNA in reptile faeces: analysis of earthworm consumption by slow worms. Mol Ecol Resour 12: 259–266. [Google Scholar]
  • Cabodevilla X, Mougeot F, Bota G, Mañosa S, Cuscó F, Martínez-García J, Arroyo B, Madeira MJ. 2021. Metabarcoding insights into the diet and trophic diversity of six declining farmland birds. Sci Rep 11: 21131. [Google Scholar]
  • Clarke KR. 1993. Non‐parametric multivariate analyses of changes in community structure. Austr J Ecol 18: 117–143. [Google Scholar]
  • Corse E, Meglécz E, Archambaud G, Ardisson M, Martin J-F., Tougard C, Chappaz R, Dubut V. 2017. A from-benchtop-to-desktop workflow for validating HTS data and for taxonomic identification in diet metabarcoding studies. Mol Ecol Resour 17: e146–e159. [Google Scholar]
  • Corse E, Tougard C, Archambaud‐Suard G, Agnèse J-F., Messu Mandeng FD, Bilong Bilong CF, Duneau D, Zinger L, Chappaz R, Xu CCY, Meglécz E, Dubut V. 2019. One‐locus‐several‐primers: a strategy to improve the taxonomic and haplotypic coverage in diet metabarcoding studies. Ecol Evol 9: 4603–4620. [Google Scholar]
  • Davies SR, Vaughan IP, Thomas RJ, Drake LE, Marchbank A, Symondson WOC. 2022. Seasonal and ontological variation in diet and age‐related differences in prey choice, by an insectivorous songbird. Ecol Evol 12: e9180. [Google Scholar]
  • Dessborn L, Brochet AL, Elmberg J, Legagneux P, Gauthier-Clerc M, Guillemain M. 2011. Geographical and temporal patterns in the diet of pintail Anas acuta, wigeon Anas penelope, mallard Anas platyrhynchos and teal Anas crecca in the Western Palearctic. Eur J Wildl Res 57: 1119–1129. [Google Scholar]
  • Dixon, P. (2003). VEGAN, a package of R functions for community ecology. J Veg Sci 14: 927–930. [Google Scholar]
  • Dorman C, Gruber B, Fründ J. 2008. Introducing the bipartite package: analysing ecological networks. R News 8: 8–11 [Google Scholar]
  • Dudgeon D, Arthington AH, Gessner MO, Kawabata Z-I., Knowler DJ, Lévêque C, Naiman RJ, Prieur-Richard A-H., Soto D, Stiassny MLJ, Sullivan CA. 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev 81: 163–182. [Google Scholar]
  • Dunn JC, Stockdale JE, Moorhouse-Gann RJ, McCubbin A, Hipperson H, Morris AJ, Grice PV, Symondson WOC. 2018. The decline of the Turtle Dove: Dietary associations with body condition and competition with other columbids analysed using high-throughput sequencing. Mol Ecol 27: 3386–3407. [Google Scholar]
  • Edwards DP, Woodcock P, Newton RJ, Edwards FA, Andrews DJR, Docherty TDS, Mitchell SL, Ota T, Benedick S, Bottrell SH, Hamer KC. 2013. Trophic flexibility and the persistence of understory birds in intensively logged rainforest: trophic responses of birds to logging. Conserv Biol 27: 1079–1086. [Google Scholar]
  • Egeter B, Bishop PJ, Robertson BC. 2015. Detecting frogs as prey in the diets of introduced mammals: a comparison between morphological and DNA-based diet analyses. Mol Ecol Resour 15: 306–316. [Google Scholar]
  • Eriksson P, Mourkas E, González-Acuna D, Olsen B, Ellström P. 2017. Evaluation and optimization of microbial DNA extraction from fecal samples of wild Antarctic bird species. Infect Ecol Epidemiol 7: 1386536. [Google Scholar]
  • Evans BA, Gawlik DE. 2020. Urban food subsidies reduce natural food limitations and reproductive costs for a wetland bird. Sci Rep 10: 14021. [Google Scholar]
  • Fischer J. 1995. Specific detection of nucleotides, creatine phosphate, and their derivatives from tissue samples in a simple, isocratic, recycling, low-volume system. LC-GC International 8: 254–264. [Google Scholar]
  • Gell PA, Finlayson CM, Davidson NC. 2023. An introduction to the Ramsar Convention on Wetlands. In Gell PA, Davidson NC Finlayson CM, eds. Ramsar Wetlands: Values, Assessment, Management, Elsevier, Amsterdam, 1–36. [Google Scholar]
  • González A, Dubut V, Corse E, Mekdad R, Dechatre T, Castet U, Hebert R, Meglécz E. 2023. VTAM: a robust pipeline for validating metabarcoding data using controls. Comput Struct Biotechnol J 21: 1151–1156. [Google Scholar]
  • Hansson L-A., Ekvall MK, Ekvall MT, Ahlgren J, Holm WS, Dessborn L, Brönmark C. 2014. Experimental evidence for a mismatch between insect emergence and waterfowl hatching under increased spring temperatures. Ecosphere 5: 1–9. [Google Scholar]
  • Hebert R, Meglécz E. 2022. NSDPY: A python package to download DNA sequences from NCBI. SoftwareX 18: 101038. [Google Scholar]
  • Hervé M. 2020. Aide-mémoire de statistique appliquée à la biologie − Construire son étude et analyser les résultats à l'aide du logiciel R. R Package version 0.9- 83-7. [Google Scholar]
  • Hoenig BD, Snider AM, Forsman AM, Hobson KA, Latta SC, Miller ET, Polito MJ, Powell LL, Rogers SL, Sherry TW, Toews DPL, Welch AJ, Taylor SS, Porter BA. 2022. Current methods and future directions in avian diet analysis. Ornithology 139: ukab 077. [Google Scholar]
  • Huang P-Y., Poon ESK, Wong ATC, So IWY, Sung Y-H., Sin SYW. 2021. DNA metabarcoding reveals the dietary composition in the endangered black-faced spoonbill. Sci Rep 11: 18773. [Google Scholar]
  • Jakubavičiute E, Bergström U, Eklöf JS, Haenel Q, Bourlat SJ. 2017. DNA metabarcoding reveals diverse diet of the three-spined stickleback in a coastal ecosystem. PLoS ONE 12: e0186929. [Google Scholar]
  • Jarman SN, McInnes JC, Faux C, Polanowski AM, Marthick J, Deagle BE, Southwell C, Emmerson L. 2013. Adélie penguin population diet monitoring by analysis of food DNA in scats. PLoS ONE 8: e82227. [Google Scholar]
  • Jedlicka JA, Sharma AM, Almeida RPP. 2013. Molecular tools reveal diets of insectivorous birds from predator fecal matter. Conserv Genet Resour 5: 879–885. [Google Scholar]
  • Kress WJ, García-Robledo C, Uriarte M, Erickson DL. 2015. DNA barcodes for ecology, evolution, and conservation. Trends Ecol Evol 30: 25–35. [Google Scholar]
  • Lamb PD, Hunter E, Pinnegar JK, Creer S, Davies RG, Taylor MI. 2019. How quantitative is metabarcoding: a meta‐analytical approach. Mol Ecol 28: 420–430. [Google Scholar]
  • Laviad-Shitrit S, Izhaki I, Lalzar M, Halpern M. 2019. Comparative analysis of intestine microbiota of four wild waterbird species. Front Microbiol 10: 1911. [Google Scholar]
  • Li C, Chen J, Liao X, Ramus AP, Angelini C, Liu L, Silliman BR, Bertness MD, He Q. 2023. Shorebirds-driven trophic cascade helps restore coastal wetland multifunctionality. Nat Commun 14: 8076. [Google Scholar]
  • Liu M, Burridge CP, Clarke LJ, Baker SC, Jordan GJ. 2023. Does phylogeny explain bias in quantitative DNA metabarcoding? MBMG 7: e101266. [Google Scholar]
  • Loch JMH, Walters LJ, Cook GS. 2020. Recovering trophic structure through habitat restoration: a review. Food Webs 25:e 00162. [Google Scholar]
  • Mathiasson S. 1973. A moulting population of non-breeding Mute Swans with special reference to flight-feather moult, feeding ecology and habitat selection. Wildfolw 24: 43–53. [Google Scholar]
  • McInnes JC, Alderman R, Deagle BE, Lea M, Raymond B, Jarman SN. 2017. Optimised scat collection protocols for dietary DNA metabarcoding in vertebrates. Methods Ecol Evol 8: 192–202. [Google Scholar]
  • Meglécz E. 2023. COInr and mkCOInr: Building and customizing a nonredundant barcoding reference database from BOLD and NCBI using a semi‐automated pipeline. Mol Ecol Resour 23: 933–945. [Google Scholar]
  • Menke S, Meier M, Sommer S. 2015. Shifts in the gut microbiome observed in wildlife faecal samples exposed to natural weather conditions: lessons from time‐series analyses using next‐generation sequencing for application in field studies. Methods Ecol Evol 6: 1080–1087. [Google Scholar]
  • Moreno-Mateos D, Power ME, Comín FA, Yockteng R. 2012. Structural and functional loss in restored wetland ecosystems. PLoS Biol 10:e1001247. [Google Scholar]
  • Murkin HR, Batt BDJ. 1987. The interactions of vertebrates and invertebrates in peatlands and marshes. Mem Entomol Soc Can 119: 15–30. [Google Scholar]
  • Muro-Torres VM, Amezcua F, Soto-Jiménez M, Balart EF, Serviere-Zaragoza E, Green L, Rajnohova J. 2020. Primary sources and food web structure of a tropical wetland with high density of mangrove forest. Water 12: 3105. [Google Scholar]
  • Murray MH, Kidd AD, Curry SE, Hepinstall-Cymerman J, Yabsley MJ, Adams HC, Ellison T, Welch CN, Hernandez SM. 2018. From wetland specialist to hand-fed generalist: Shifts in diet and condition with provisioning for a recently urbanized wading bird. Phil Trans R Soc B 373: 20170100. [Google Scholar]
  • Nielsen JM, Clare EL, Hayden B, Brett MT, Kratina P. 2018. Diet tracing in ecology: Method comparison and selection. Methods Ecol Evol 9: 278–291. [Google Scholar]
  • Oehm J, Juen A, Nagiller K, Neuhauser S, Traugott M. 2011. Molecular scatology: how to improve prey DNA detection success in avian faeces? Mol Ecol Resour 11: 620–628. [Google Scholar]
  • Oertli B, Frossard P-A. 2013. Mares et étangs: Ecologie, gestion, aménagement et valorisation, EPFL Press, Lausanne, 512p. [Google Scholar]
  • Oertli B, Parris KM. 2019. Review: Toward management of urban ponds for freshwater biodiversity. Ecosphere 10: e 02810. [Google Scholar]
  • Ontiveros D, Pleguezuelos JM, Caro J. 2005. Prey density, prey detectability and food habits: The case of Bonelli's eagle and the conservation measures. Biol Conserv 123: 19–25. [Google Scholar]
  • Perrow MR, Schutten JH, Howes JR, Holzer T, Madgwick FJ, Jowitt AJD. 1997. Interactions between coot (Fulica atra) and submerged macrophytes: the role of birds in the restoration process. Hydrobiologia 342: 241–255. [Google Scholar]
  • Pompanon F, Deagle BE, Symondson WOC, Brown DS, Jarman SN, Taberlet P. 2012. Who is eating what: Diet assessment using next generation sequencing. Mol Ecol 21: 1931–1950. [Google Scholar]
  • Poulin B, Lefebvre G, Paz L. 2010. Red flag for green spray: adverse trophic effects of Bti on breeding birds. J Appl Ecol 47: 884–889. [Google Scholar]
  • Prewer E, Vilaça ST, Bird S, Kutz S, Leclerc L, Kyle CJ. 2023. Metabarcoding of fecal pellets in wild muskox populations reveals negative relationships between microbiome and diet alpha diversity. Ecol Evol 13: e10192. [Google Scholar]
  • R Core Team. 2022. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. https://www. [Google Scholar]
  • Reid AJ, Carlson AK, Creed IF, Eliason EJ, Gell PA, Johnson PTJ, Kidd KA, MacCormack TJ, Olden JD, Ormerod SJ, Smol JP, Taylor WW, Tockner K, Vermaire JC, Dudgeon D, Cooke SJ. 2019. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol Rev 94: 849–873. [CrossRef] [PubMed] [Google Scholar]
  • Rejmankova E. 2011. The role of macrophytes in wetland ecosystems. J Ecol Environ 34: 333–345. [Google Scholar]
  • Riedl HL, Stinson L, Pejchar L, Clements WH. 2018. An introduced plant affects aquatic-derived carbon in the diets of riparian birds. PLoS ONE 13: e0207389. [Google Scholar]
  • Schmaltz L, Quaintenne G, Gaudard C, Dalloyau S. 2020. Comptage des Oiseaux d'eau à la mi-janvier en France. Résultats 2020 du comptage Wetlands International, LPO France, Rochefort, 26 p. [Google Scholar]
  • Schnell IB, Bohmann K, Gilbert MTP. 2015. Tag jumps illuminated − Reducing sequence-to-sample misidentifications in metabarcoding studies. Mol Ecol Resour 15: 1289–1303. [Google Scholar]
  • Schumm YR, Masello JF, Vreugdenhil-Rowlands J, Fischer D, Hillerich K, Quillfeldt P. 2023. Diet composition of wild columbiform birds: Next-generation sequencing of plant and metazoan DNA in faecal samples. Sci Nat 110: 38. [Google Scholar]
  • Sousa LL, Silva SM, Xavier R. 2019. DNA metabarcoding in diet studies: unveiling ecological aspects in aquatic and terrestrial ecosystems. Environmental DNA 1: 199–214. [Google Scholar]
  • Stroud DA, Davidson NC. 2021. Fifty years of criteria development for selecting wetlands of international importance. Mar Freshw Res 73: 1134–1148. [Google Scholar]
  • Svendsen A-SL, Nielsen LB, Schmidt JB, Bruhn D, Andersen LH, Pertoldi C. 2023. eDNA metabarcoding- and microscopic analysis for diet determination in waterfowl, a comparative study in Vejlerne, Denmark. Biology 12: 1272. [Google Scholar]
  • Taberlet P, Coissac E, Pompanon F, Gielly L, Miquel C, Valentini A, Vermat T, Corthier G, Brochmann C, Willerslev E. 2007. Power and limitations of the chloroplast trn L (UAA) intron for plant DNA barcoding. Nucleic Acids Res 35: e14. [Google Scholar]
  • Taberlet P, Bonin A, Zinger L, Coissac E. 2018. Environmental DNA: For biodiversity research and monitoring. Oxford, Oxford University Press, 272p. [Google Scholar]
  • Trevelline BK, Nuttle T, Porter BA, Brouwer NL, Hoenig BD, Steffensmeier ZD, Latta SC. 2018. Stream acidification and reduced aquatic prey availability are associated with dietary shifts in an obligate riparian Neotropical migratory songbird. PeerJ 6: e5141. [Google Scholar]
  • Ushio M, Murata K, Sado T, Nishiumi I, Takeshita M, Iwasaki W, Miya M. 2018. Demonstration of the potential of environmental DNA as a tool for the detection of avian species. Sci Rep 8: 4493. [Google Scholar]
  • Vargas-Pellicer P, Watrobska C, Knowles S, Schroeder J, Banks-Leite C. 2019. How should we store avian faecal samples for microbiota analyses? Comparing efficacy and cost-effectiveness. J Microbiol Methods 165: 105689. [Google Scholar]
  • Verkuil YI, Nicolaus M, Ubels R, Dietz MW, Samplonius JM, Galema A, Kiekebos K, de Knijff P, Both C. 2022. DNA metabarcoding quantifies the relative biomass of arthropod taxa in songbird diets: Validation with camera‐recorded diets. Ecol Evol 12: e8881. [Google Scholar]
  • Villsen K, Corse E, Meglécz E, Archambaud‐Suard G, Vignes H, Ereskovsky AV, Chappaz R, Dubut V. 2022a. DNA metabarcoding suggests adaptive seasonal variation of individual trophic traits in a critically endangered fish. Mol Ecol 31: 5889–5908. [Google Scholar]
  • Villsen K, Corse E, Archambaud-Suard G, Héran K, Meglécz E, Ereskovsky AV, Chappaz R, Dubut, V. 2022b. Diet metabarcoding reveals extensive dietary overlap between two benthic stream fishes (Zingel asper and Cottus gobio) and provides insights into their coexistence. Diversity 14: 412. [Google Scholar]
  • Wilfinger WW, Mackey K, Chomczynski P. 1997. Effect of pH and ionic strength on the spectrophotometric assessment of nucleic acid purity. BioTechniques 22: 474–481. [Google Scholar]
  • WWF. 2022. Living Planet Report 2022-Building a nature-positive society. Almond, R. E. A., Grooten, M., Juffe Bignoli, D. Petersen, T. (Eds). WWF, Gland, Switzerland, 115p. [Google Scholar]
  • Zarzoso‐Lacoste D, Corse E, Vidal E. 2013. Improving PCR detection of prey in molecular diet studies: Importance of group‐specific primer set selection and extraction protocol performances. Mol Ecol Resour 13: 117–127. [Google Scholar]
  • Zarzoso-Lacoste D, Bonnaud E, Corse E, Gilles A, Meglécz E, Costedoat C, Gouni A, Vidal E. 2016. Improving morphological diet studies with molecular ecology: an application for invasive mammal predation on island birds. Biol Conser 193: 134–142. [Google Scholar]
  • Zarzoso-Lacoste D, Bonnaud E, Corse E, Dubut V, Lorvelec O, De Meringo H, Santelli C, Meunier J-Y., Ghestemme T, Gouni A, Vidal E. 2019. Stuck amongst introduced species: Trophic ecology reveals complex relationships between the critically endangered Niau kingfisher and introduced predators, competitors and prey. NeoBiota 53: 61–82. [Google Scholar]
  • Zeale MR, Butlin RK, Barker GL, Lees DC, Jones G. 2011. Taxon‐specific PCR for DNA barcoding arthropod prey in bat faeces. Mol Ecol Resour 11: 236–244. [Google Scholar]
  • Zinger L, Bonin A, Alsos IG, Bálint M, Bik H, Boyer F, Chariton AA, Creer S, Coissac E, Deagle BE, De Barba M, Dickie IA, Dumbrell AJ, Ficetola GF, Fierer N, Fumagalli L, Gilbert MTP, Jarman S, Jumpponen A, Kauserud H, Orlando L, Pansu J, Pawlowski J, Tedersoo L, Thomsen PF, Willerslev E, Taberlet P. 2019. DNA metabarcoding—Need for robust experimental designs to draw sound ecological conclusions. Mol Ecol 28: 1857–1862. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.