Knowl. Manag. Aquat. Ecosyst.
Number 424, 2023
Biological conservation, ecosystems restoration and ecological engineering
Article Number 17
Number of page(s) 11
Published online 14 June 2023
  • Alexander JB, Ingram GA. 1992. Noncellular nonspecific defence mechanisms of fish. Annu Rev Fish Dis 2: 249–279. [CrossRef] [Google Scholar]
  • Babič MN, Gunde-Cimerman N, Vargha M, Tischner Z, Magyar D, Veríssimo C, Sabino R, Viegas C, Meyer W, Brandão J. 2017. Fungal contaminants in drinking water regulation? A tale of ecology, exposure, purification and clinical relevance. Int J Environ Res Public Health 14: 636. [CrossRef] [Google Scholar]
  • Bammer V, György A, Pehlivanov L, Schabuss M, Szaloky Z. 2015. Fish. Chapter 9In Liška I, Wagner F, Sengl M, Deutsch K,Slobodník J, eds. Joint Danube Survey 3: A Comprehensive Analysis of Danube Water Quality. International Commission for the Protection of the Danube River, Vienna. [Google Scholar]
  • Barnes MA, Turner CR. 2016. The ecology of environmental DNA and implications for conservation genetics. Conserv Genet 17: 1–17. [CrossRef] [Google Scholar]
  • Briem F, Zeisler C, Guenay Y, Staudacher K, Vogt H, Traugott M. 2018. Identifying plant DNA in the sponging-feeding insect pest Drosophila suzukii. J Pest Sci 91: 985–994. [CrossRef] [Google Scholar]
  • Carreon‐Martinez L, Johnson TB, Ludsin SA, Heath DD. 2011. Utilization of stomach content DNA to determine diet diversity in piscivorous fishes. J Fish Biol 78: 1170–1182. [CrossRef] [PubMed] [Google Scholar]
  • Chuang LY, Cheng YH, Yang ChH. 2013. Specific primer design for the polymerase chain reaction. Biotechnol Lett 35: 1541–1549. [Google Scholar]
  • Corse E, Costedoat C, Chappaz R, Pech N, Martin JF, Gilles A. 2010. A PCR‐based method for diet analysis in freshwater organisms using 18S rDNA barcoding on faeces. Mol Ecol Resour 10: 96–108. [CrossRef] [PubMed] [Google Scholar]
  • Deagle BE, Thomas AC, Shaffer AK, Trites AW, Jarman SN. 2013. Quantifying sequence proportions in a DNA-based diet study using Ion Torrent amplicon sequencing: Which counts count? Mol Ecol Resour 13: 620–633. [CrossRef] [PubMed] [Google Scholar]
  • Eduard W. 2009. Fungal spores: A critical review of the toxicological and epidemiological evidence as a basis for occupational exposure limit setting. Crit Rev Toxicol 39: 799–864. [CrossRef] [PubMed] [Google Scholar]
  • Elbrecht V, Leese F. 2017. Validation and development of COI metabarcoding primers for freshwater macroinvertebrate bioassessment. Front Environ Sci 5: 1–11. [Google Scholar]
  • Geller J, Meyer C, Parker M, Hawk H. 2013. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Mol Ecol Resour 13: 851–861. [CrossRef] [PubMed] [Google Scholar]
  • Goldberg CS, Turner CR, Deiner K, Klymus KE, Thomsen PF, Murphy MA, Spear SF, McKee A, Oyler-McCance SJ, Cornman RS, Laramie MB, Mahon AR, Lance RF, Pilliod DS, Strickler KM, Waits LP, Fremier AK, Takahara T, Herder JE, Taberlet P. 2016. Critical considerations for the application of environmental DNA methods to detect aquatic species. Methods Ecol Evol 7: 1299–1307. [CrossRef] [Google Scholar]
  • Greenstone MH, Weber DC, Coudron TA, Payton ME, Hu JS. 2012. Removing external DNA contamination from arthropod predators destined for molecular gut‐content analysis. Mol Ecol Resour 12: 464–469. [CrossRef] [PubMed] [Google Scholar]
  • Guardiola FA, Cuartero M, del Mar Collado-González M, Arizcún M, Díaz Baños FG, Meseguer J, Cuesta A, Esteban MA. 2015. Description and comparative study of physico-chemical parameters of the teleost fish skin mucus. Biorheology 52: 247–256. [Google Scholar]
  • Guillerault N, Bouletreau S, Iribar A, Valentini A, Santoul F. 2017. Application of DNA metabarcoding on faeces to identify European catfish Silurus glanis diet. J Fish Biol 90: 2214–2219. [CrossRef] [PubMed] [Google Scholar]
  • Hering D, Borja A, Jones JI, Pont D, Boets P, Bouchez A, Bruce K, Drakare S, Hänfling B, Kahlert M, Leese F, Meissner K, Mergen P, Reyjol Y, Segurado P, Vogler A, Kelly M. 2018. Implementation options for DNA-based identification into ecological status assessment under the European water framework directive. Water Res 138: 192–205. [CrossRef] [PubMed] [Google Scholar]
  • Jo H, Gim JA, Jeong KS, Kim HS, Joo GJ. 2014. Application of DNA barcoding for identification of freshwater carnivorous fish diets: is number of prey items dependent on size class for Micropterus salmoides? Ecol Evol 4: 219–229. [CrossRef] [PubMed] [Google Scholar]
  • Jo H, Ventura M, Vidal N, Gim JS, Buchaca T, Barmuta LA, Jeppesen E, Joo GJ. 2016. Discovering hidden biodiversity: the use of complementary monitoring of fish diet based on DNA barcoding in freshwater ecosystems. Ecol Evol 6: 219–232. [CrossRef] [PubMed] [Google Scholar]
  • Kamenova S, Mayer R, Rubbmark OR, Coissac E, Plantegenest M, Traugott M. 2018. Comparing three types of dietary samples for prey DNA decay in an insect generalist predator. Mol Ecol Resour 18: 966–973. [CrossRef] [PubMed] [Google Scholar]
  • Klymus KE, Marshall NT, Stepien CA. 2017. Environmental DNA (eDNA) metabarcoding assays to detect invasive invertebrate species in the Great Lakes. PLoS ONE 12: e 0177643. [Google Scholar]
  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol 35: 1547–1549. [CrossRef] [PubMed] [Google Scholar]
  • Kumari S, Tyor AK, Bhatnagar A. 2019. Evaluation of the antibacterial activity of skin mucus of three carp species. Int Aquat Res 11: 225–239. [CrossRef] [Google Scholar]
  • Leese F, Sander M, Buchner D, Elbrecht V, Haase P, Zizka VMA. 2021. Improved freshwater macroinvertebrate detection from environmental DNA through minimized nontarget amplification. Environ DNA 3: 261–276. [CrossRef] [Google Scholar]
  • Legler ND, Johnson TB, Heath DD, Ludsin SA. 2010. Water temperature and prey size effects on the rate of digestion of larval and early juvenile fish. Trans Am Fish Soc 139: 868–875. [CrossRef] [Google Scholar]
  • Leray M, Yang J, Meyer C, Mills S, Agudelo N, Ranwez V, Boehm J, Machida R. 2013. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Front Zool 10: 1–14. [Google Scholar]
  • Martin J. 2011. From bands to base pairs: Problems in the identification of species using the example of Chironomus oppositus Walker (Honorary Thienemann Lecture). In Wang X, Liu W eds. Contemporary Chironomid Studies − Proceedings of the 17th International Symposium on Chironomidae. Tianjin: Nankai University Press, pp. 126–143. [Google Scholar]
  • Mächler E, Osathanunkul M, Altermatt F. 2018. Shedding light on eDNA: neither natural levels of UV radiation nor the presence of a filter feeder affect eDNA-based detection of aquatic organisms. PLoS ONE 13: e 0195529. [Google Scholar]
  • Moszczynska A, Locke SA, McLaughlin JD, Marcogliese DJ, Crease TJ. 2009. Development of primers for the mitochondrial cytochrome c oxidase I gene in digenetic trematodes (Platyhelminthes) illustrates the challenge of barcoding parasitic helminths. Mol Ecol Resour 9: 75–82. [CrossRef] [PubMed] [Google Scholar]
  • Nagashima Y, Kikuchi N, Shimakura K, Shiomi K. 2003. Purification and characterization of an antibacterial protein in the skin secretion of rockfish Sebastes schlegeli. Comp Biochem Physiol C Toxicol Pharmacol 136: 63–71. [CrossRef] [PubMed] [Google Scholar]
  • Namulawa VT, Mutiga S, Musimbi F, Akello S, Ngángá F, Kago L, Kyallo M, Harvey J, Ghimire S. 2020. Assessment of Fungal Contamination in Fish Feed from the Lake Victoria Basin, Uganda. Toxins 12: 233. [CrossRef] [PubMed] [Google Scholar]
  • Oehm J, Thalinger B, Mayr H, Traugott M. 2016. Maximizing dietary information retrievable from carcasses of Great Cormorants Phalacrocorax carbo using a combined morphological and molecular analytical approach. Ibis 158: 51–60. [CrossRef] [PubMed] [Google Scholar]
  • Patel M, Ashraf MS, Siddiqui AJ, Ashraf SA, Sachidanandan M, Snoussi M, Adnan M, Hadi S. 2020. Profiling and role of bioactive molecules from Puntius sophore (freshwater/brackish fish) skin mucus with its potent antibacterial, antiadhesion, and antibiofilm activities. Biomolecules 10: 920. [Google Scholar]
  • Pilliod DS, Goldberg CS, Arkle RS, Waits LP. 2014. Factors influencing detection of eDNA from a stream-dwelling amphibian. Mol Ecol Resour 14: 109–116. [CrossRef] [PubMed] [Google Scholar]
  • Piñol J, Mir G, Gomez‐Polo P, Agustí N. 2015. Universal and blocking primer mismatches limit the use of high‐throughput DNA sequencing for the quantitative metabarcoding of arthropods. Mol Ecol Resour 15: 819–830. [CrossRef] [PubMed] [Google Scholar]
  • Piñol J, Senar MA, Symondson WOC. 2018. The choice of universal primers and the characteristics of the species mixture determine when DNA metabarcoding can be quantitative. Mol Ecol 28: 407–419. [PubMed] [Google Scholar]
  • Pyrri I, Tripyla E, Zalachori A, Chrysopoulou M, Parmakelis A, Kapsanaki-Gotsi E. 2020. Fungal contaminants of indoor air in the National Library of Greece. Aerobiologia 36: 387–400. [CrossRef] [Google Scholar]
  • Rivera SF, Rimet F, Vasselon V, Vautier M, Domaizon I, Bouchez A. 2022. Fish eDNA metabarcoding from aquatic biofilm samples: Methodological aspects. Mol Ecol Resour 22: 1440–1453. [CrossRef] [PubMed] [Google Scholar]
  • Schneider J, Valentini A, Dejean T, Montarsi F, Taberlet P, Glaizot O, Fumagalli L. 2016. Detection of Invasive Mosquito Vectors Using Environmental DNA (eDNA) from Water Samples. PLoS ONE 11: e 0162493. [Google Scholar]
  • Sint D, Raso L, Kaufmann R, Traugott M. 2011. Optimizing methods for PCR‐based analysis of predation. Mol Ecol Resour 11: 795–801. [CrossRef] [PubMed] [Google Scholar]
  • Smith PJ, McVeagh SM, Allain V, Sanchez C. 2005. DNA identification of gut contents of large pelagic fishes. J Fish Biol 67: 1178–1183. [CrossRef] [Google Scholar]
  • Stoeckle BC, Beggel S, Cerwenka AF, Motivans E, Kuehn R, Geist J. 2017. A systematic approach to evaluate the influence of environmental conditions on eDNA detection success in aquatic ecosystems. PLoS ONE 12: e 0189119. [Google Scholar]
  • Strickler KM, Fremier AK, Goldberg CS. 2015. Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms. Biol Conserv 183: 85–92. [Google Scholar]
  • Sunnucks P, Hales DF. 1996. Numerous transposed sequences of mitochondrial cytochrome oxidase I-II in aphids of the genus Sitobion (Hemiptera: Aphididae). Mol Biol Evol 13: 510–524. [CrossRef] [PubMed] [Google Scholar]
  • Svendsen Y, Bøgwald J. 1997. Influence of artificial wound and non-intact mucus layer on mortality of Atlantic salmon (Salmo salar L.) following a bath challenge with Vibrio anguillarum and Aeromonas salmonicida. Fish Shellfish Immunol 7: 317–325. [CrossRef] [Google Scholar]
  • Thalinger B, Oehm J, Mayr H, Obwexer A, Zeisler C, Traugott M. 2016. Molecular prey identification in Central European piscivores. Mol Ecol Resour 16: 123–137. [CrossRef] [PubMed] [Google Scholar]
  • Thomsen PF, Kielgast J, Iversen LL, Wiuf C, Rasmussen M, Gilbert MTP, Orlando L, Willerslev E. 2012. Monitoring endangered freshwater biodiversity using environmental DNA. Mol Ecol 21: 2565–2573. [CrossRef] [PubMed] [Google Scholar]
  • Vanhove M, Tessens B, Schoelinck C, Jondelius U, Littlewood T, Artois T, Huyse T. 2013. Problematic barcoding in flatworms: a case-study on monogeneans and rhabdocoels (Platyhelminthes). ZooKeys 365: 355–379. [CrossRef] [Google Scholar]
  • Wang H, Tang W, Zhang R, Ding S. 2019. Analysis of enzyme activity, antibacterial activity, antiparasitic activity and physico-chemical stability of skin mucus derived from Amphiprion clarkii. Fish Shellfish Immunol 86: 653–661. [CrossRef] [PubMed] [Google Scholar]
  • Weiss M, Leese F. 2016. Widely distributed and regionally isolated! Drivers of genetic structure in Gammarus fossarum in a human-impacted landscape. BMC Evol Biol 16: 1–14. [Google Scholar]
  • Wu JS, Lee C, Wu CC, Shiue YL. 2004. Primer design using genetic algorithm. Bioinformatics 20: 1710–1717. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.