Issue
Knowl. Manag. Aquat. Ecosyst.
Number 423, 2022
Development of biological and environmental indicators and indices, testing and use
Article Number 6
Number of page(s) 15
DOI https://doi.org/10.1051/kmae/2021038
Published online 04 February 2022
  • Adrian R, Wilhelm S, Gerten D. 2006. Life-history traits of lake plankton species may govern their phenological response to climate warming. Global Change Biol 12: 652–661. [CrossRef] [Google Scholar]
  • Albert JS, Destouni G, Duke-Sylvester SM, et al. 2020. Scientists' warning to humanity on the freshwater biodiversity crisis. Ambio. https://doi.org/10.1007/s13280-020-01318-8 [PubMed] [Google Scholar]
  • Andersen T, Carstensen J, Hernández-García E, Duarte CM. 2009. Ecological thresholds and regime shifts: approaches to identification. Trends Ecol Evol 24: 49–57 [CrossRef] [PubMed] [Google Scholar]
  • Barbour MT. 1999. Rapid bioassessment protocols for use in wadeable streams and rivers: periphyton, benthic macroinvertebrates and fish. US Environmental Protection Agency, Office of Water. [Google Scholar]
  • Bernhardt ES, Palmer MA. 2011. River restoration: the fuzzy logic of repairing reaches to reverse catchment scale degradation. Ecol Appl 21: 1926–1931. [CrossRef] [PubMed] [Google Scholar]
  • Bervoets L, Knaepkens G, Eens M, Blust R. 2005. Fish community responses to metal pollution. Environ Pollut 138: 338–349. [CrossRef] [PubMed] [Google Scholar]
  • Bestelmeyer BT, Ellison AM, Fraser WR, et al. 2011. Analysis of abrupt transitions in ecological systems. Ecosphere 2: art129. [CrossRef] [Google Scholar]
  • Bhat A, Magurran AE. 2006. Taxonomic distinctness in a linear system: a test using a tropical freshwater fish assemblage. Ecography 29: 104–110. [CrossRef] [Google Scholar]
  • Booth DB, Roy AH, Smith B, Capps KA. 2016. Global perspectives on the urban stream syndrome. Freshw Sci 35: 412–420. [CrossRef] [Google Scholar]
  • Bouska KL, Houser JN, De Jager NR, et al. 2020. Conceptualizing alternate regimes in a large floodplain-river ecosystem: water clarity, invasive fish, and floodplain vegetation. J Environ Manag 264: 110516. [CrossRef] [Google Scholar]
  • Burdis RM, DeLain SA, Lund EM, Moore MJC, Popp WA. 2020. Decadal trends and ecological shifts in backwater lakes of a large floodplain river: Upper Mississippi River. Aquatic Sci 82. https://doi.org/10.1007/s00027-020-0703-7 [CrossRef] [Google Scholar]
  • Butts TA, Shackleford DB, Bergerhouse TR. 1999. Evaluation of reaeration efficiencies of sidestream elevated pool aeration (SEPA) stations. ISWS Contract Report CR-653. [Google Scholar]
  • Capon SJ, Chambers LE, Mac Nally R, et al. 2013. Riparian ecosystems in the 21st century: hotspots for climate change adaptation? Ecosystems 16: 359–381. [CrossRef] [Google Scholar]
  • Capon SJ, Lynch AJJ, Bond N, et al. 2015. Regime shifts, thresholds and multiple stable states in freshwater ecosystems; a critical appraisal of the evidence. Sci Total Environ 534: 122–130. [CrossRef] [PubMed] [Google Scholar]
  • Clarke KR, Gorley RN. 2015. Primer, V7. In User Manual/Tutorial (7.0). [Google Scholar]
  • Clarke KR, Tweedley JR, Valesini FJ. 2014. Simple shade plots aid better long-term choices of data pre-treatment in multivariate assemblage studies. J Mar Biol Assoc UK 94: 1–16. [CrossRef] [Google Scholar]
  • Clarke KR, Warwick RM. 1999. The taxonomic distinctness measure of biodiversity: weighting of step lengths between hierarchical levels. Mar Ecol Progr Ser 184: 21–29. [CrossRef] [Google Scholar]
  • Clarke KR, Warwick RM. 2001a. A further biodiversity index applicable to species lists: variation in taxonomic distinctness. Mar Ecol Progr Ser 216: 265–278. [CrossRef] [Google Scholar]
  • Clarke KR, Warwick RM. 2001b. Changes in marine communities: an approach to statistical analysis and interpretation. Plymouth: Plymouth Marine Laboratory. [Google Scholar]
  • Clements WH, Vieira NKM, Sonderegger DL. 2010. Use of ecological thresholds to assess recovery in lotic ecosystems. J North Am Bentholog Soc 29: 1017–1023. [CrossRef] [Google Scholar]
  • Cloern JE, Jassby AD, Carstensen J, et al. 2012. Perils of correlating CUSUM‐transformed variables to infer ecological relationships (Breton et al. 2006; Glibert 2010). Limnol Oceanogr 57: 665–668. [CrossRef] [Google Scholar]
  • Coeck J, Vandelannoote A, Yseboodt R, Verheyen RF. 1993. Use of the abundance/biomass method for comparison of fish communities in regulated and unregulated lowland rivers in Belgium. Regul Rivers: Res Manag 8: 73–82. [CrossRef] [Google Scholar]
  • Connell JH, Sousa WP. 1983. On the evidence needed to judge ecological stability or persistence. Am Natural 121: 789–824. [CrossRef] [Google Scholar]
  • Connolly SR, Hughes TP, Belwood DR, Karlson RH. 2005. Ecology: Community structure of corals and reef fishes at multiple scales. Science 309: 1363–1365. [CrossRef] [PubMed] [Google Scholar]
  • DeBoer JA, Thoms MC, Casper AF, Delong MD. 2019. The response of fish diversity in a highly modified large Rriver system to multiple anthropogenic stressors. J Geophys Res Biogeosci 124: 384–404. [CrossRef] [Google Scholar]
  • deYoung B, Barange M, Beaugrand G, et al. 2008. Regime shifts in marine ecosystems: detection, prediction and management. Trends Ecol Evolut 23: 402–409. [CrossRef] [Google Scholar]
  • Dodds WK, Robinson CT, Gaiser EE, et al. 2012. Surprises and insights from long-term aquatic data sets and experiments. BioScience 62: 709–721. [CrossRef] [Google Scholar]
  • Everard M, Moggridge HL. 2012. Rediscovering the value of urban rivers. Urban Ecosyst 15: 293–314. [CrossRef] [Google Scholar]
  • Fausch KD, Lyons J, Karr JR, Angermeier PL. 1990. Fish communities as indicators of environmental degradation. Am Fish Soc Symp 8: 123–144. [Google Scholar]
  • Folke C, Carpenter S, Walker B, et al. 2004. Regime shifts, resilience, and biodiversity in ecosystem management. Annu Rev Ecol Evol Syst 35. [Google Scholar]
  • Fore A. 2015a. Greater Chicago Historic Infrastructure Projects Enhance Windy City Water Quality. Wateronline.Com. https://www.wateronline.com/doc/greater-chicago-historic-infrastructure-projects-enhance-windy-city-water-quality-0001 [Google Scholar]
  • Fore A. 2015b. Press Release Disinfected Water Begins Flowing to Chicago River System from MWRD's Calumet Plant. [Google Scholar]
  • Francis RA. 2009. Perspectives on the potential for reconciliation ecology in urban riverscapes. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 4: 1–20. [CrossRef] [Google Scholar]
  • Gallardo B, Gascón S, Quintana X, Comín FA. 2011. How to choose a biodiversity indicator-redundancy and complementarity of biodiversity metrics in a freshwater ecosystem. Ecol Indic 11: 1177–1184. [CrossRef] [Google Scholar]
  • Giblin SM. 2017. Identifying and quantifying environmental thresholds for ecological shifts in a large semi-regulated river. J Freshw Ecol 32: 433–453. [CrossRef] [Google Scholar]
  • Gibson-Reinemer DK, Sparks RE, Parker JL, et al. 2017. Ecological recovery of a river fish assemblage following the implementation of the Clean Water Act. BioScience 67: 957–970. [CrossRef] [Google Scholar]
  • Gordon LJ, Peterson GD, Bennett EM. 2008. Agricultural modifications of hydrological flows create ecological surprises. Trends Ecol Evol 23: 211–219 [CrossRef] [PubMed] [Google Scholar]
  • Greenberg J. 2004. A natural history of the Chicago region. University of Chicago Press. [Google Scholar]
  • Happel A, Czesny S, Rinchard J, Hanson SD. 2017. Data pre-treatment and choice of resemblance metric affect how fatty acid profiles depict known dietary origins. Ecol Res 32: 757–767. [CrossRef] [Google Scholar]
  • Happel A, Gallagher D. 2021. Chicago's fish assemblage over ∼30 years − more fish and more native species. Urban Ecosyst 24: 311–325. [CrossRef] [Google Scholar]
  • Henderson PA, Magurran AE. 2010. Linking species abundance distributions in numerical abundance and biomass through simple assumptions about community structure. Proc R Soc B 277: 1561–1570. [CrossRef] [PubMed] [Google Scholar]
  • Hill L. 2019. The Chicago River: a natural and unnatural history. Southern Illinois University Press. [Google Scholar]
  • Holling CS. 1973. Resilience and stability of ecological systems. Annu Rev Ecol Syst 4: 1–23. [CrossRef] [Google Scholar]
  • Illinois Coastal Management Program. 2011. Illinois Coastal Management Program Issue Paper: Chicago River and North Shore Channel Corridors. http://www.chicagoareawaterways.org/documents/CAWS-UAA-DRAFT-REPORT.pdf [Google Scholar]
  • Ji L, Jiang X, Liu C, et al. 2020. Response of traditional and taxonomic distinctness diversity indices of benthic macroinvertebrates to environmental degradation gradient in a large Chinese shallow lake. Environ Sci Pollut Res 27: 21804–21815 [CrossRef] [PubMed] [Google Scholar]
  • Jiang X, Pan B, Sun Z, Cao L, Lu Y. 2020. Application of taxonomic distinctness indices of fish assemblages for assessing effects of river-lake disconnection and eutrophication in floodplain lakes. Ecol Indic 110: 105955. [CrossRef] [Google Scholar]
  • Kanehl PD, Lyons J, Nelson JE. 1997. Changes in the habitat and fish community of the Milwaukee River, Wisconsin, following removal of the Woolen Mills Dam. North American J Fish Manag 17: 387–400. [CrossRef] [Google Scholar]
  • Karr JR, Dudley DR. 1981. Ecological perspective on water quality goals. Environ Manag 5: 55–68. [CrossRef] [Google Scholar]
  • Legendre P, Gallagher ED. 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129: 271–280. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Lenth R, Singmann H, Love J. 2018. Emmeans: Estimated marginal means, aka least-squares means. R package “emmeans” version 1.4.5. [Google Scholar]
  • LimnoTech. 2010. Chicago Area Waterway System Habitat Evaluation and Improvement Study: Habitat Evaluation Report. [Google Scholar]
  • Lyashevska O, Farnsworth KD. 2012. How many dimensions of biodiversity do we need? Ecol Indic 18: 485–492. [CrossRef] [Google Scholar]
  • Mac Nally R, Albano C, Fleishman E. 2014. A scrutiny of the evidence for pressure‐induced state shifts in estuarine and nearshore ecosystems. Aust Ecol 39: 898–906. [CrossRef] [Google Scholar]
  • Magurran AE, Baillie SR, Buckland ST, et al. 2010. Long-term datasets in biodiversity research and monitoring: Assessing change in ecological communities through time. Trends Ecol Evol 25: 574–582 [CrossRef] [PubMed] [Google Scholar]
  • Magurran AE, Henderson PA. 2010. Temporal turnover and the maintenance of diversity in ecological assemblages. Philos Trans Royal Soc B 365: 3611–3620. [CrossRef] [PubMed] [Google Scholar]
  • McClelland MA, Irons KS, Sass GG, et al. 2013. A comparison of two electrofishing programmes used to monitor fish on the Illinois River, Illinois, USA. River Res Appl 29: 125–133. [CrossRef] [Google Scholar]
  • Melching CS. 2018. Application of a water quality model for determining instream aeration station location and operational rules: a case study. Water Sci Eng 11: 8–16. [CrossRef] [Google Scholar]
  • Morlon H, White EP, Etienne RS, et al. 2009. Taking species abundance distributions beyond individuals. Ecol Lett 12: 488–501. [CrossRef] [PubMed] [Google Scholar]
  • Morris EK, Caruso T, Buscot F, et al. 2014. Choosing and using diversity indices: insights for ecological applications from the German Biodiversity Exploratories. Ecol Evol 4: 3514–3524. [CrossRef] [PubMed] [Google Scholar]
  • MWRD. 2019. Stickney Water Reclamation Plant, Metropolitan Water Reclamation District of Greater Chicago Fact Sheet. [Google Scholar]
  • Nicholls KH. 2011. Detection of regime shifts in multi-species communities: The Bay of Quinte phytoplankton example. Methods Ecol Evol 2: 416–426. [CrossRef] [Google Scholar]
  • Nicholls KH, Hoyle JA, Johannsson OE, Dermott R. 2011. A biological regime shift in the Bay of Quinte ecosystem (Lake Ontario) associated with the establishment of invasive dreissenid mussels. J Great Lakes Res 37: 310–317. [CrossRef] [Google Scholar]
  • Noy-Meir I, Walker D, Williams WT. 1975. Data transformations in ecological ordination: II. On the meaning of data standardization. J Ecol 779–800. [CrossRef] [Google Scholar]
  • O'Hara M, Ickes BS, Gittinger EJ, Delain SA, Dukerschein T. 2007. Development of a life history database for Upper Mississippi River fishes. US Geological Survey. [Google Scholar]
  • Oksanen J, Blanchet FG, Friendly M, et al. 2019. “The vegan package”. Community ecology package. R Package Version 2. 5–6. https://CRAN.R-project.org/package=vegan. [Google Scholar]
  • Olson KR, Morton LW. 2017. Chicago's 132-year effort to provide safe drinking water. J Soil Water Conserv 72: 19A–25A. [CrossRef] [Google Scholar]
  • Ormerod SJ, Dobson M, Hildrew AG, Townsend C. 2010. Multiple stressors in freshwater ecosystems. Freshw Biol 55, 1–4. [CrossRef] [Google Scholar]
  • Overland J, Rodionov S, Minobe S, Bond N. 2008. North Pacific regime shifts: Definitions, issues and recent transitions. https://doi.org/10.1016/j.pocean.2008.03.016 [Google Scholar]
  • Parker J, Cao Y, Sass GG, Epifanio J. 2018. Large river fish functional diversity responses to improved water quality over a 28 year period. Ecol Indic 88, 322–331. [CrossRef] [Google Scholar]
  • Penczak T, Kruk A. 1999. Applicability of the abundance/biomass comparison method for detecting human impacts on fish populations in the Pilica River, Poland. Fish Res 39: 229–240. [CrossRef] [Google Scholar]
  • Pinto BCT, Peixoto MG, Araújo FG. 2006. Effects of the proximity from an industrial plant on fish assemblages in the rio Paraíba do Sul, southeastern Brazil. Neotrop Ichthyol 4: 269–278. [CrossRef] [Google Scholar]
  • Piperac MS, Milošević D, Petrović A, Simić V. 2018. The best data design for applying the taxonomic distinctness index in lotic systems: a case study of the Southern Morava River basin. Sci Total Environ 610: 1281–1287. [CrossRef] [PubMed] [Google Scholar]
  • Piperac MS, Milošević D, Simić S, Simić V. 2016. The utility of two marine community indices to assess the environmental degradation of lotic systems using fish communities. Sci Total Environ 551: 1–8. [CrossRef] [PubMed] [Google Scholar]
  • Piperac MS, Milošević D, Simić V. 2015. The application of the abundance/biomass comparison method on riverine fish assemblages: limits of use in lotic systems. Biol Nyssana 6: 25–32. [Google Scholar]
  • Pluth TB, Brose DA, Gallagher DW, Wasik J. 2021. Long‐term trends show improvements in water quality in the Chicago metropolitan region with investment in wastewater infrastructure, deep tunnels, and reservoirs. Water Resour Res 57: e2020WR028422. [CrossRef] [Google Scholar]
  • Poff NL, Allan JD. 1995. Functional organization of stream fish assemblages in relation to hydrological variability. Ecology 76: 606–627 [CrossRef] [Google Scholar]
  • Poole GC, Dunham JB, Keenan DM, et al. 2004. The case for regime-based water quality standards. BioScience 54: 155–161. [CrossRef] [Google Scholar]
  • R Development Core Team. 2020. R: A language and environment for statistical computing. Version 3.6.3. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ [Google Scholar]
  • Retzer ME. 2005. Changes in the diversity of native fishes in seven basins in Illinois, USA. Am Midland Natural 153: 121–134. [CrossRef] [Google Scholar]
  • Retzer ME, Batten B. 2005. Fishes of the Chicago region: a review of the Dennison and Illinois Natural History Survey collections. Trans Illinois State Acad Sci 98: 63–73. [Google Scholar]
  • Richardson DM, Whittaker RJ. 2010. Conservation biogeography − foundations, concepts and challenges. Divers Distrib 16: 313–320. [CrossRef] [Google Scholar]
  • Roberts LR, Bishop IJ, Adams JK. 2020. Anthropogenically forced change in aquatic ecosystems: reflections on the use of monitoring, archival and palaeolimnological data to inform conservation. Geo: Geography and Environment 7: e00089. [CrossRef] [Google Scholar]
  • Rodionov SN. 2004. A sequential algorithm for testing climate regime shifts. Geophys Res Lett 31. [Google Scholar]
  • Scheffer M, Carpenter SR. 2003. Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol Evol 18: 648–656. [CrossRef] [Google Scholar]
  • Sheet MF. (n.d.). Tunnel and Reservoir Plan (TARP), Metropolitan Water Reclaimation District of Greater Chicago Fact Sheet. [Google Scholar]
  • Slawski TM, Veraldi FM, Pescitelli SM, Pauers MJ. 2008. Effects of tributary spatial position, urbanization, and multiple low-head dams on warmwater fish community structure in a midwestern stream. North Am J Fish Manag 28: 1020–1035 [CrossRef] [Google Scholar]
  • Solzman DM. 2006. The Chicago River: An illustrated history and guide to the river and its waterways. University of Chicago. [Google Scholar]
  • Villanueva MC, Ibarra AA. 2016. Assessing the ecological stress in a Garonne River stretch, southwest France. Ecol Indic 67: 466–473. [CrossRef] [Google Scholar]
  • Vörösmarty CJ, McIntyre PB, Gessner MO, et al. 2010. Global threats to human water security and river biodiversity. Nature 467: 555–561. [CrossRef] [PubMed] [Google Scholar]
  • Walsh CJ, Roy AH, Feminella JW, et al. 2005. The urban stream syndrome: current knowledge and the search for a cure. J North Am Bentholog Soc 24: 706–723. [CrossRef] [Google Scholar]
  • Warwick RM, Clarke KR. 1994. Relearning the ABC: taxonomic changes and abundance/biomass relationships in disturbed benthic communities. Mar Biol 118: 739–744. [CrossRef] [Google Scholar]
  • Washington HG. 1984. Diversity, biotic and similarity indices: a review with special relevance to aquatic ecosystems. Water Res 18: 653–694. [CrossRef] [Google Scholar]
  • Zeileis A, Kleiber C, Krämer W, Hornik K. 2003. Testing and dating of structural changes in practice. Comput Stat Data Anal 44: 109–123. [CrossRef] [MathSciNet] [Google Scholar]
  • Zeileis A, Leisch F, Hornik K, Kleiber C. 2002. Strucchange: An R package for testing for structural change in linear regression models. J Stat Softw 7: 1–38 [CrossRef] [Google Scholar]
  • Zeileis A, Shah A, Patnaik I. 2010. Testing, monitoring, and dating structural changes in exchange rate regimes. Comput Stat Data Anal 54: 1696–1706. [CrossRef] [Google Scholar]
  • Znachor P, Nedoma J, Hejzlar J, et al. 2018. Multiple long-term trends and trend reversals dominate environmental conditions in a man-made freshwater reservoir. Sci Total Environ 624: 24–33. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.