Issue
Knowl. Manag. Aquat. Ecosyst.
Number 423, 2022
Management of habitats and populations/communities
Article Number 5
Number of page(s) 10
DOI https://doi.org/10.1051/kmae/2022001
Published online 04 February 2022
  • Ailstock MS, Cente E. 2000. Adaptive strategies of common reed Phragmites australis. The Role of Phragmites in the Mid-Atlantic Region. April, 17: 1–7. [Google Scholar]
  • Ailstock MS, Norman CM, Bushmann PJ. 2001. Common reed Phragmites australis: control and effects upon biodiversity in freshwater nontidal wetlands. Restor Ecol 9: 49–59. [CrossRef] [Google Scholar]
  • Angelini P, Rubini A, Gigante D, Reale L, Pagiotti R, Venanzoni R., 2012. The endophytic fungal communities associated with the leaves and roots of the common reed (Phragmites australis) in Lake Trasimeno (Perugia Italy) in declining and healthy stands. Fungal Ecol 5 : 683–693. [CrossRef] [Google Scholar]
  • Angiosperm Phylogeny Group. 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161 : 105–121. [CrossRef] [Google Scholar]
  • Barber NA, Jones HP, Duvall MR, Wysocki WP, Hansen MJ, Gibson DJ. 2017. Phylogenetic diversity is maintained despite richness losses over time in restored tallgrass prairie plant communities. J Appl Ecol 54 : 137–144. [CrossRef] [Google Scholar]
  • Bernard-Verdier M, Hulme PE. 2019. Alien plants can be associated with a decrease in local and regional native richness even when at low abundance. J Ecol 107: 1343–1354. [CrossRef] [Google Scholar]
  • Bilton DT, Foggo A, Rundle SD. 2001. Size permanence and the proportion of predators in ponds. Archiv für Hydrobiologie 451–458. [CrossRef] [Google Scholar]
  • Blackburn TM, Essl F, Evans T, et al. 2014. A unified classification of alien species based on the magnitude of their environmental impacts. PLoS Biol 12 : e1001850. [CrossRef] [PubMed] [Google Scholar]
  • Boggero A, Basset A, Austoni M, et al.2014. Weak effects of habitat type on susceptibility to invasive freshwater species: an Italian case study. Aquat Conserv 24 : 841–852. [CrossRef] [Google Scholar]
  • Bolpagni R. 2021. Towards global dominance of invasive alien plants in freshwater ecosystems: the dawn of the Exocene? Hydrobiologia 848: 2259–2279. [CrossRef] [Google Scholar]
  • Bolpagni R, Dalla Vecchia A. 2021. Pioneer annual vegetation of gravel-bed rivers: First insights on environmental drivers from three Apennine streams. J Limnol 80 : 2052. [Google Scholar]
  • Bolpagni R, Laini A, Stanzani C, Chiarucci A. 2018. Aquatic Plant Diversity in Italy: Distribution, Drivers and Strategic Conservation Actions. Front Plant Sci 9: 116. [CrossRef] [PubMed] [Google Scholar]
  • Bolpagni R, Piotti A. 2016. The importance of being natural in a human-altered riverscape: role of wetland type in supporting habitat heterogeneity and the functional diversity of vegetation. Aquat Conserv 26 : 1168–1183. [CrossRef] [Google Scholar]
  • Bolpagni R, Racchetti E, Laini A. 2016. Fragmentation and groundwater supply as major drivers of algal and plant diversity and relative cover dynamics along a highly modified lowland river. Sci Total Environ 568: 875–884. [CrossRef] [PubMed] [Google Scholar]
  • Box GEP, Cox DR. 1964. An analysis of transformations (with discussion). J R Stat Soc Series B 26: 211–252. [Google Scholar]
  • Brix H. 1988. Light-dependent variations in the composition of the internal atmosphere of Phragmites australis (Cav.) Trin. ex Steudel. Aquat Bot 30 : 319–329. [CrossRef] [Google Scholar]
  • Brummer TJ, Byrom AE, Sullivan JJ, Hulme PE. 2016. Alien and native plant richness and abundance respond to different environmental drivers across multiple gravel floodplain ecosystems. Divers Distrib 22 : 823–835. [CrossRef] [Google Scholar]
  • Cadotte MW, Jonathan Davies T, Regetz J, Kembel SW, Cleland E, Oakley TH. 2010. Phylogenetic diversity metrics for ecological communities: integrating species richness abundance and evolutionary history. Ecol lett 13 : 96–105. [CrossRef] [PubMed] [Google Scholar]
  • Campos JA. 2010. Flora alóctona del Paıs Vasco y su influencia en la vegetación. Mem. Doc. (inéd.). Univ. País Vasco (UPV/EHU), Leioa. [Google Scholar]
  • Carpenter SR, Lodge DM. 1986. Effects of submersed macrophytes on ecosystem processes. Aquat Bot 26: 341–370. [CrossRef] [Google Scholar]
  • Chun JH, Lee CB. 2019. Temporal changes in species phylogenetic and functional diversity of temperate tree communities: Insights from assembly patterns. Front Plant Sci 10: 294. [CrossRef] [PubMed] [Google Scholar]
  • Coppi A, Lastrucci L, Cappelletti D, et al 2018. AFLP approach reveals variability in Phragmites australis: implications for its die-back and evidence for genotoxic effects. Front Plant Sci 9: 386. [CrossRef] [PubMed] [Google Scholar]
  • Cristofoletti A. 1981. Geomorfologia Fluvial Canal Fluvial. Vol1 Edgard Blucher Ltda São Paulo SP 313p. [Google Scholar]
  • Dalle Fratte M, Bolpagni R, Brusa G, et al 2019. Alien plant species invade by occupying similar functional spaces to native species. Flora 257: 151419. [CrossRef] [Google Scholar]
  • de Bello F, Vandewalle M, Reitalu T, et al 2013. Evidence for scale‐and disturbance‐dependent trait assembly patterns in dry semi‐natural grasslands. J Ecol 101 : 1237–1244. [CrossRef] [Google Scholar]
  • Dehling DM, Fritz SA, Töpfer T, et al 2014. Functional and phylogenetic diversity and assemblage structure of frugivorous birds along an elevational gradient in the tropical Andes. Ecography 37 : 1047–1055. [Google Scholar]
  • Dong LJ, Yu HW, He WM. 2015. What determines positive neutral and negative impacts of Solidago canadensis invasion on native plant species richness?. Sci Rep 5 : 1–9. [Google Scholar]
  • Dudgeon D. 2019. Multiple threats imperil freshwater biodiversity in the Anthropocene. Current Biology 29: R960−R967. [CrossRef] [PubMed] [Google Scholar]
  • Enders M, Havemann F, Ruland F, et al 2020. A conceptual map of invasion biology: Integrating hypotheses into a consensus network. Glob Ecol Biogeogr 29 : 978–991. [CrossRef] [PubMed] [Google Scholar]
  • Engelhardt KA, Ritchie ME. 2001. Effects of macrophyte species richness on wetland ecosystem functioning and services. Nature 411(6838): 687–689. [CrossRef] [PubMed] [Google Scholar]
  • Faith DP. 1992. Conservation evaluation and phylogenetic diversity. Biol Conserv 61 : 1–10. [CrossRef] [Google Scholar]
  • Flynn DF, Mirotchnick N, Jain M, Palmer MI, Naeem S. 2011. Functional and phylogenetic diversity as predictors of biodiversity–ecosystem‐function relationships. Ecology 92 : 1573–1581. [CrossRef] [PubMed] [Google Scholar]
  • Forest F, Grenyer R, Rouget M, et al 2007. Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 445 : 757–760. [CrossRef] [PubMed] [Google Scholar]
  • Fox J. 1987. Effect displays for generalized linear models. Sociol Methodol 347–361. [CrossRef] [Google Scholar]
  • France KE, Duffy JE. 2006. Diversity and dispersal interactively affect predictability of ecosystem function. Nature 441 : 1139–1143. [CrossRef] [PubMed] [Google Scholar]
  • Funk JL, Cleland EE, Suding KN, Zavaleta ES. 2008. Restoration through reassembly: plant traits and invasion resistance. Trends Ecol Evol 23 : 695–703. [CrossRef] [PubMed] [Google Scholar]
  • Galatowitsch SM, Anderson NO, Ascher PD. 1999. Invasiveness in wetland plants in temperate North America. Wetlands 19 : 733–755. [CrossRef] [Google Scholar]
  • Gigante D, Venanzoni R, Zuccarello V. 2011. Reed die-back in southern Europe? A case study from Central Italy. Comptes rendus biologies 334 : 327–336. [CrossRef] [PubMed] [Google Scholar]
  • Hao M, Zhang C, Zhao X, Von Gadow K. 2018. Functional and phylogenetic diversity determine woody productivity in a temperate forest. Ecol Evol 8 : 2395–2406. [CrossRef] [PubMed] [Google Scholar]
  • Heidbüchel P, Hussner A. 2020. Falling into pieces: In situ fragmentation rates of submerged aquatic plants and the influence of discharge in lowland streams. Aquat Bot 160: 103164. [CrossRef] [Google Scholar]
  • Hutchinson GE. 1975. A Treatise on Limnology. Vol 3 Limnological Botany, John Wiley & Sons, New York. [Google Scholar]
  • Karstens S, Jurasinski G, Glatzel S, Buczko U. 2016. Dynamics of surface elevation and microtopography in different zones of a coastal Phragmites wetland. Ecol Eng 94: 152–63. [CrossRef] [Google Scholar]
  • Kattge J, Boenisch G, Diaz S, et al. 2020. TRY plant trait database − enhanced coverage and open access. Glob Change Biol. 26: 119–188. [CrossRef] [PubMed] [Google Scholar]
  • Kembel SW, Hubbell SP. 2006. The phylogenetic structure of a Neotropical forest tree community. Ecology 87: 86–99. [Google Scholar]
  • Kembel SW, Cowan PD, Helmus MR, et al 2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26 : 1463–1464. [CrossRef] [PubMed] [Google Scholar]
  • Kitagawa R, Mimura M, Mori AS, Sakai A. 2015. Topographic patterns in the phylogenetic structure of temperate forests on steep mountainous terrain. Aob Plants 7: plv134. [CrossRef] [PubMed] [Google Scholar]
  • Kleyer M, Bekker RM, Knevel IC, et al 2008. The LEDA Traitbase: a database of life‐history traits of the Northwest European flora. J Ecol 96 : 1266–1274. [CrossRef] [Google Scholar]
  • Laliberté E, Legendre P, Shipley B, Laliberté ME. 2014. Package ‘FD’ Measuring functional diversity from multiple traits and other tools for functional ecology. R package version 10–12. [Google Scholar]
  • Lamb EG, Bayne E, Holloway G, et al. 2009. Indices for monitoring biodiversity change: Are some more effective than others?. Ecol Indic 9 : 432–444. [Google Scholar]
  • Landucci F, Gigante D, Venanzoni R, Chytrý M. 2013. Wetland vegetation of the class Phragmito-Magno-Caricetea in central Italy. Phytocoenologia 43 : 67–100. [CrossRef] [Google Scholar]
  • Lastrucci L, Gigante D, Vaselli O, et al 2016. Sediment chemistry and flooding exposure: a fatal cocktail for Phragmites australis in the Mediterranean basin?. Ann Limnol-Int J Lim 52: 365–377 EDP Sciences. [CrossRef] [EDP Sciences] [Google Scholar]
  • Lazzaro L, Bolpagni R, Buffa G, et al. 2020a. Impact of invasive alien plants on native plant communities and Natura 2000 habitats: State of the art gap analysis and perspectives in Italy. J Environ Manage 274: 111–140. [Google Scholar]
  • Lazzaro L, Lastrucci L, Viciani D, Benesperi R, Gonnelli V, Coppi A. 2020b. Patterns of change in α and β taxonomic and phylogenetic diversity in the secondary succession of semi-natural grasslands in the Northern Apennines. PeerJ 8: e8683. [CrossRef] [PubMed] [Google Scholar]
  • Lososová Z, de Bello F, Chytrý M, et al 2015. Alien plants invade more phylogenetically clustered community types and cause even stronger clustering. Glob Ecol Biogeogr 24: 786–794. [CrossRef] [Google Scholar]
  • Magnusson A, Skaug H, Nielsen A, et al 2017. Package ‘glmmTMB’. R Package Version 02.0. [Google Scholar]
  • Mayfield MM, Levine JM. 2010. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol. Lett. 13:1085–1093. [CrossRef] [Google Scholar]
  • McGrannachan CM, McGeoch MA. 2019. Multispecies plant invasion increases function but reduces variability across an understorey metacommunity. Biol Invasions 21 : 1115–1129. [CrossRef] [Google Scholar]
  • Miler O, Albayrak I, Nikora V, O’Hare M. 2014. Biomechanical properties and morphological characteristics of lake and river plants: implications for adaptations to flow conditions. Aquat Sci 76 : 465–481. [CrossRef] [Google Scholar]
  • Miller RC, Zedler JB. 2003. Responses of native and invasive wetland plants to hydroperiod and water depth. Plant Ecol 167 : 57–69. [CrossRef] [Google Scholar]
  • Montanari I, Buldrini F, Bolpagni R, et al 2020. Role of irrigation canal morphology in driving riparian flora in over-exploited catchments. Comm Ecol 21 : 121–132. [CrossRef] [Google Scholar]
  • Morlon H, Schwilk DW, Bryant JA, et al 2011. Spatial patterns of phylogenetic diversity. Ecol. Lett. 14 : 141–149. [CrossRef] [Google Scholar]
  • Mouchet MA, Villéger S, Mason NW, Mouillot D. 2010. Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Funct Ecol 24 : 867–876. [CrossRef] [Google Scholar]
  • Mouquet N, Devictor V, Meynard CN, et al. 2012. Ecophylogenetics: advances and perspectives. Biol Rev 87 : 769–785. [CrossRef] [Google Scholar]
  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D. 2020. vegan: community ecology package. R package version 2.5-7. [Google Scholar]
  • Orsomando E, Catorci A. 1991. Carta della vegetazione del comprensorio Trasimeno. Editrice Grafica l'Etruria Cortona. [Google Scholar]
  • Ostendorp W. 1993. Reed bed characteristics and significance of reeds in landscape ecology. [Google Scholar]
  • Perez-Harguindeguy N, Diaz S, Garnier E, et al. 2016. Corrigendum to: new handbook for standardised measurement of plant functional traits worldwide. Aust J Bot 64 : 715–716. [CrossRef] [Google Scholar]
  • Perronne R, Mauchamp L, Mouly A, Gillet F. 2014. Contrasted taxonomic phylogenetic and functional diversity patterns in semi-natural permanent grasslands along an altitudinal gradient. Plant Ecol Evol 147 : 165–175. [CrossRef] [Google Scholar]
  • Purvis A, Agapow PM, Gittleman JL, Mace GM. 2000. Nonrandom extinction and the loss of evolutionary history. Science 288 : 328–330. [CrossRef] [PubMed] [Google Scholar]
  • Rejmánek M. 1996. A theory of seed plant invasiveness: the first sketch. Biol Conserv 78 : 171–181. [CrossRef] [Google Scholar]
  • Rejmánek M. 2000. Invasive plants: approaches and predictions. Austral Ecol 25 : 497–506. [CrossRef] [Google Scholar]
  • Rodrigues AS, Gaston KJ. 2002. Maximising phylogenetic diversity in the selection of networks of conservation areas. Biological Conservation 105: 103–111. [CrossRef] [Google Scholar]
  • Rosset V, Ruhi A, Bogan MT, Datry T. 2017. Do lentic and lotic communities respond similarly to drying?. Ecosphere 87: e01809. [CrossRef] [Google Scholar]
  • Seebens H, Blackburn TM, Dyer EE, et al. 2017. No saturation in the accumulation of alien species worldwide. Nat Commun 8 : 1–9. [CrossRef] [PubMed] [Google Scholar]
  • Smith SM, Roman CT, James‐Pirri MJ, Chapman K, Portnoy J, Gwilliam E. 2009. Responses of plant communities to incremental hydrologic restoration of a tide‐restricted salt marsh in southern New England (Massachusetts USA). Restor Ecol 17 : 606–618. [CrossRef] [Google Scholar]
  • Srivastava DS, Cadotte MW, MacDonald AAM, Marushia RG, Mirotchnick N. 2012. Phylogenetic diversity and the functioning of ecosystems. Ecol Lett 15 : 637–648. [CrossRef] [PubMed] [Google Scholar]
  • Starzomski BM, Srivastava DS. 2007. Landscape geometry determines community response to disturbance. Oikos 116 : 690–699. [CrossRef] [Google Scholar]
  • Takeda S, Kurihara Y. 1988. The effects of the reed Phragmites australis (Trin.) on substratum grain-size distribution in a salt marsh. J Oceanogr Soc Japan 44 : 103–112. [CrossRef] [Google Scholar]
  • Thuiller W, Gallien L, Boulangeat I, et al. 2010. Resolving Darwin's naturalization conundrum: a quest for evidence. Divers Distrib 16 : 461–475. [CrossRef] [Google Scholar]
  • Tsirogiannis C, Sandel B. 2016. PhyloMeasures: a package for computing phylogenetic biodiversity measures and their statistical moments. Ecography 39 : 709–714. [CrossRef] [Google Scholar]
  • Uddin MN, Robinson RW. 2017a. Responses of plant species diversity and soil physical-chemical-microbial properties to Phragmites australis invasion along a density gradient. Sci Rep 7 : 1–13. [CrossRef] [PubMed] [Google Scholar]
  • Uddin MN, Robinson RW. 2017b. Allelopathy and resource competition: the effects of Phragmites australis invasion in plant communities. Bot Stud 58 : 1–12. [CrossRef] [PubMed] [Google Scholar]
  • van Rees CB, Waylen KA, Schmidt‐Kloiber A, et al. 2021. Safeguarding freshwater life beyond 2020: Recommendations for the new global biodiversity framework from the European experience. Conserv Lett 14 : e12771. [CrossRef] [Google Scholar]
  • Veldkornet DA, Adams JB, Boatwright JS, Rajkaran A. 2019. Barcoding of estuarine macrophytes and phylogenetic diversity of estuaries along the South African coastline. Genome 62 : 585–595. [CrossRef] [PubMed] [Google Scholar]
  • Villéger S, Mason NW, Mouillot D. 2008. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89 : 2290–2301. [CrossRef] [PubMed] [Google Scholar]
  • Vymazal J. 2011. Plants used in constructed wetlands with horizontal subsurface flow: a review. Hydrobiologia 674 : 133–156. [CrossRef] [Google Scholar]
  • Wang C, Jiang K, Liu J, Zhou J, Wu B. 2018. Moderate and heavy Solidago canadensis L. invasion are associated with decreased taxonomic diversity but increased functional diversity of plant communities in East China. Ecol Eng 112: 55–64. [CrossRef] [Google Scholar]
  • Wang C, Cheng H, Wu B, et al. 2021. The functional diversity of native ecosystems increases during the major invasion by the invasive alien species Conyza canadensis. Ecol Eng 159: 106093. [CrossRef] [Google Scholar]
  • Webb CO. 2000. Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. Am Natur 156 : 145–155. [CrossRef] [PubMed] [Google Scholar]
  • Webb CO, Donoghue MJ. 2005. Phylomatic: tree assembly for applied phylogenetics. Mol Ecol Notes 5 : 181–183. [CrossRef] [Google Scholar]
  • Wetzel RG. 2001. Limnology: Lakes and River Ecosystems. 3rd edition. Academic press. [Google Scholar]
  • Winter M, Schweiger O, Klotz S, et al. 2009. Plant extinctions and introductions lead to phylogenetic and taxonomic homogenization of the European flora. PNAS 106 : 21721–21725. [CrossRef] [PubMed] [Google Scholar]
  • Zanne AE, Tank DC, Cornwell WK, et al. 2014. Three keys to the radiation of angiosperms into freezing environments. Nature 506 : 89–92. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.