Open Access
Knowl. Manag. Aquat. Ecosyst.
Number 422, 2021
Article Number 10
Number of page(s) 12
Published online 08 March 2021
  • Baattrup-Pedersen A, Riis T. 1999. Macrophyte diversity and composition in relation to substratum characteristics in regulated and unregulated Danish streams. Freshwat Biol 42: 375–385. [Google Scholar]
  • Baattrup-Pedersen A, Riis T. 2004. Impacts of different weed cutting practices on macrophyte species diversity and composition in a Danish stream. River Res Appl 20: 103–114. [Google Scholar]
  • Baattrup-Pedersen A, Larsen SE, Riis T. 2002. Long-term effects of stream management on plant communities in two Danish lowland streams. Hydrobiologia 481: 33–45. [Google Scholar]
  • Baattrup-Pedersen A, Larsen SE, Riis T. 2003. Composition and richness of macrophyte communities in small Danish streams − influence of environmental factors and weed cutting. Hydrobiologia 495: 171–179. [Google Scholar]
  • Baattrup‐Pedersen A, Ovesen NB, Larsen SE, Andersen DK, Riis T, Kronvang B, Rasmussen JJ. 2018. Evaluating effects of weed cutting on water level and ecological status in Danish lowland streams. Freshw Biol 63: 652–661. [Google Scholar]
  • Bal KD, Meire P. 2009. The influence of macrophyte cutting on the hydraulic resistance of lowland rivers. J Aquat Plant Manag 47: 65–68. [Google Scholar]
  • Bal KD, Struyf E, Vereecken H, Viaene P, De Doncker L, de Deckere E, Mostaert F, Meire P. 2011. How do macrophyte distribution patterns affect hydraulic resistances? Ecol Eng 37: 529–533. [Google Scholar]
  • Bal KD, Verschoren V, Sara JR, Meire P, Schoelynck J. 2017. Consequences of different cutting regimes on regrowth and nutrient stoichiometry of Sparganium erectum L. and Potamogeton natans L. Riv Res Appl 33: 1420–1427. [Google Scholar]
  • Caffrey JM. 1993. Plant management as an integrated part of Ireland's aquatic resources. Hydroécol Appl 5: 77–96. [Google Scholar]
  • Crabtree B, Horn J, Johnson I. 2012. Review of urban pollution management standards against WFD requirements. Environment Agency, Horizon House, Bristol. Document code: LI 7373, 78pp. [Google Scholar]
  • Curran JC, Hession WC. 2013. Vegetative impacts on hydraulics and sediment processes across the fluvial system. J Hydrol 505: 364–376. [Google Scholar]
  • Dawson F. 1978. Aquatic plant management in semi—natural streams. J Environ Manage 6: 213–221. [Google Scholar]
  • Doeg TJ, Milledge GA. 1991. Effect of experimentally increasing concentrations of suspended sediment on macroinvertebrate drift. Aust J Mar Freshw Res 42: 519–526. [Google Scholar]
  • Eekhout JPC, Hoitink AJF, de Brouwer JHF, Verdonschot PFM. 2015. Morphological assessment of reconstructed lowland streams in the Netherlands. Adv Wat Resour 81: 161–171. [Google Scholar]
  • Everall NC, Johnson MF, Wood P, Mattingley L. 2018. Sensitivity of the early life stages of a mayfly to fine sediment and orthophosphate levels. Environ Pollut 237: 792–802. [Google Scholar]
  • Fox AM, Murphy KJ. 1990. The efficacy and ecological impacts of herbicide and cutting regimes on the submerged plant communities of four British rivers. I. A comparison of management efficacies. J Appl Ecol 27: 520–540. [Google Scholar]
  • Frasson RPDM, Pavelsky TM, Fonstad MA, Durand MT, Allen GH, Schuman G, Lion C, Beighley RE, Yang X. 2019. Global relationships between river width, slope, catchment area, meander wavelength, sinuosity, and discharge. Geophys Res Lett 46: 3252–3262. [Google Scholar]
  • Greer MJC, Crow SK, Hicks AS, Closs GP. 2015. The effects of suspended sediment on brown trout (Salmo trutta) feeding and respiration after macrophyte control. N Z J Mar Freshw Res 49: 278–285. [Google Scholar]
  • Greer MJC, Hicks AS, Crow SK, Closs GP. 2017. Effects of mechanical macrophyte control on suspended sediment concentrations in streams. N Z J Mar Freshw Res 51: 254–278. [Google Scholar]
  • Greig SM, Sear DA, Carling PA. 2007. A review of factors influencing the availability of dissolved oxygen to incubating alsmonid embryos. Hydrol Proc 21: 323–334. [Google Scholar]
  • Hothorn T, Bretz F, Westfall P. 2008. Simultaneous inference in general parametric models. Biom J 50: 346–363. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • IPCC. 2020. Summary for policymakers. In Masson-Delmotte V, P. Zhai H-O, Pörtner D, et al., eds. Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change. World Meteorological Organization, Geneva, Switzerland, 32 pp. [Google Scholar]
  • Jones JI, Murphy JF, Collins AL, Sear DA, Naden PS, Armitage PD. 2012. The impact of fine sediment on macroinvertebrates. River Res Appl 28: 1055–1071. [Google Scholar]
  • Kaenel BR, Uehlinger U. 1999. Aquatic plant management: ecological effects in two streams of the Swiss Plateau. Hydrobiologia 415: 257–263. [Google Scholar]
  • Kronvang B, Laubel A, Grant R. 1997. Suspended sediment and particulate phosphorus transport and delivery pathways in an arable catchment, Gelbæk stream, Denmark. Hydrol Process 11: 627–642. [Google Scholar]
  • Lamba J, Thompson AM, Karthikeyan KG, Fitzpatrick FA. 2015. Sources of fine sediment stored in agricultural lowland streams, Midwest, USA. Geomorphology 236: 44–53. [Google Scholar]
  • Larsen S, Ormerod SJ. 2010. Combined effects of habitat modification on trait composition and species nestedness in river invertebrates. Biol Conserv 143: 2638–2646. [Google Scholar]
  • Larsen S, Pace G, Ormerod SJ. 2011. Experimental effects of sediment deposition on the structure and function of macroinvertebrate assemblages in temperate streams. River Res Appl 27: 257–267. [Google Scholar]
  • Leggieri L, Feijoo C, Giorgi A, Ferreiro N, Acuna V. 2013. Seasonal weather effects on hydrology drive the metabolism of non-forest lowland streams. Hydrobiologia 716: 47–58. [Google Scholar]
  • Mulholland, PJ, Houser JN, Maloney KO. 2005. Stream diurnal dissolved oxygen profiles as indicators of in-stream metabolism and disturbance effects: Fort Benning as a case study. Ecol Indic 5: 243–252. [Google Scholar]
  • Oksanen J, Guillaume, Blanchet F, Friendly M, Roland K, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens HH, Szoecs E, Wagner H. 2018. Community ecology package “vegan”, version 2.3-1. [Google Scholar]
  • Old GH, Naden PS, Rameshwaran P, Acreman MC, Baker S, Edwards FK, Sorensen JPR, Mountford O, Gooddy DC. 2014. Instream and riparian implications of weed cutting in a chalk river. Ecol Eng 71: 290–300. [Google Scholar]
  • Österling EM. 2018. Sedimentation affects emergence rate of host fish fry in unionoid mussel streams. Anim Conserv 22: 444–451. [Google Scholar]
  • Pardo I, García L. 2016. Water abstraction in small lowland streams: unforeseen hypoxia and anoxia effects. Sci Total Environ 568: 226–235. [PubMed] [Google Scholar]
  • Pedersen ML. 2009. Effects of channelisation, riparian structure and catchment area on physical habitats in small lowland streams. Fundam Appl Limnol 174: 89–99. [Google Scholar]
  • Pedersen ML, Friberg N. 2009. Influence of disturbance on habitats and biological communities in lowland streams. Fundam Appl Limnol 174: 27–41. [Google Scholar]
  • Pedersen ML, Friberg N, Larsen SE. 2004. Physical habitat structure in Danish lowland streams. River Res Appl 20: 653–669. [Google Scholar]
  • Pedersen ML, Baattrup-Pedersen A, Rorth FR, Madsen TV, Larsen SE. 2011. Short-term impacts of weed cutting on physical habitats in lowland rivers − The importance of initial environmental conditions. Polish J Environ Stud 20: 1271–1280. [Google Scholar]
  • Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team. 2020. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-150, [Google Scholar]
  • R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL [Google Scholar]
  • Rovira A, Alcaraz C, Trobajo R. 2016. Effects of plant architecture and water velocity on sediment retention by submerged macrophytes. Freshw Biol 61: 758–768. [Google Scholar]
  • Rubin JF. 1995. Estimating the success of natural spawning salmonids in streams. J Fish Biol 46: 603–622. [Google Scholar]
  • Sillmann J, Kharin VV, Zwiers FW, Zhang X, Bronaugh D. 2013. Climate extremes indices in the CMIP5 multimodel ensemble: part 2. Future climate projections. J Geophys Res 118: 2473–2493. [Google Scholar]
  • Verdonschot PFM, Nijboer RC. 2002. Towards a decision support system for stream restoration in the Netherlands: an overview of restoration projects and future needs. Hydrobiologia 478: 131–148. [Google Scholar]
  • Verschoren V, Shchoelynck J, Cox T, Schoutens K, Temmerman S, Meire P. 2017. Opposing effects of aquatic vegetation on hydraulic functioning and transport of dissolved and organic particulate matter in a lowland river: a field experiment. Ecol Eng 105: 221–230. [Google Scholar]
  • Wildhaber YS, Michel C, Epting J, Wildhaber RA, Huber E, Huggenberger P, Burkardt-Holm P, Alewell C. 2014. Effects of river morphology, hydraulic gradients, and sediment deposition on water exchange and oxygen dynamics in salmonid redds. Sci Total Environ 470: 488–500. [PubMed] [Google Scholar]
  • Wood PJ, Armitage PD. 1997. Biological effects of fine sediment in the lotic environment. Environ Manage 21: 203–217. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.