Knowl. Manag. Aquat. Ecosyst.
Number 420, 2019
Topical Issue on Fish Ecology
Article Number 49
Number of page(s) 12
Published online 21 November 2019
  • Adámek Z. 2014. Hydrobiology in Fisheries. In: Adámek Z, Helešic J, Maršálek B, Rulík, M. (ed.), Applied Hydrobiology. Vodňany, CZ: USB, 376. [Google Scholar]
  • Adámek Z, Sukop I, Rendón PM, Kouřil J. 2003. Food competition between 2+ tench (Tinca tinca L.), common carp (Cyprinus carpio L.) and bigmouth buffalo (Ictiobus cyprinellus Val.) in pond polyculture. J Appl Ichthyol 19: 165–169. [Google Scholar]
  • Adhikari S, Sahu BC, Dey L. 2012. Nutrients budget and effluents characteristics in polyculture of scampi (Macrobrachium rosenbergii) and Indian major carps ponds using organic inputs. Water Sci Technol 66: 1540–1548. [CrossRef] [PubMed] [Google Scholar]
  • Alongi DM, McKinnon AD, Brinkman R, Trott LA, Undu MC. 2009. The fate of organic matter derived from small-scale fish cage aquaculture in coastal waters of Sulawesi and Sumatra, Indonesia. Aquaculture 295: 60–75. [Google Scholar]
  • Bachmann RW, Hoyer MV, Canfield DE. 2000. Internal heterotrophy following the switch from macrophytes to algae in Lake Apopka, Florida. Hydrobiologia 418: 217–227. [Google Scholar]
  • Biddanda B, Ogdahl M, Cotner J. 2001. Dominance of bacterial metabolism in oligotrophic relative to eutrophic waters. Limnol Oceanogr 46: 730–739. [Google Scholar]
  • Böhm M, Schultz S, Koussoroplis A-M, Kainz MJ. 2014. Tissue-specific fatty acids response to different diets in common carp (Cyprinus carpio L.). PLOS ONE 9: e94759. [CrossRef] [PubMed] [Google Scholar]
  • Bosma RH, Verdegem MC. 2011. Sustainable aquaculture in ponds: principles, practices and limits. Livestock Sci 139: 58–68. [CrossRef] [Google Scholar]
  • Boyd CE, Wood CW, Chaney PL, Queiroz JF. 2010. Role of aquaculture pond sediments in sequestration of annual global carbon emissions. Environ Pollut 158: 2537–2540. [Google Scholar]
  • Broyer J, Curtet L. 2012. Biodiversity and fish farming intensification in French fishpond systems. Hydrobiologia 694: 205–218. [Google Scholar]
  • Čermák B, Cempírková R, Jeroch H, et al. 2008. Krmiva konvenční a ekologická/Feedstuffs conventional and ecological : vědecká monografie. Jihočeská univerzita v Českých Budějovicích, Zemědělská fakulta, 326 s., České Budějovice. [Google Scholar]
  • Chumchal MM, Drenner RW. 2004. Interrelationships between phosphorus loading and common carp in the regulation of phytoplankton biomass. Archiv für Hydrobiol 161: 147–158. [CrossRef] [Google Scholar]
  • Coloso JJ, Cole JJ, Pace ML. 2011. Difficulty in discerning drivers of lake ecosystem metabolism with high-frequency data. Ecosystems 14: 935. [Google Scholar]
  • Craig S, Helfrich LA, Kuhn D, Schwarz MH. 2017. Understanding fish nutrition, feeds, and feeding. Publication 420-256. Yorktown, Virginia: Virginia State University, 4. [Google Scholar]
  • Degani G. 2006. Digestible energy in dietary sorghum, wheat bran, and rye in the common carp (Cyprinus carpio L.). [Google Scholar]
  • Deines AM, Bunnell DB, Rogers MW, Beard TD Jr., Taylor WW. 2015. A review of the global relationship among freshwater fish, autotrophic activity, and regional climate. Rev Fish Biol Fish 25: 323–336. [Google Scholar]
  • del Giorgio PA, Peters RH. 1993. Balance between phytoplankton production and plankton respiration in lakes. Can J Fish Aquatic Sci 50: 282–289. [CrossRef] [Google Scholar]
  • Duarte CM, Prairie YT. 2005. Prevalence of heterotrophy and atmospheric CO2 emissions from aquatic ecosystems. Ecosystems 8: 862–870. [Google Scholar]
  • Fagbenro O. 1999. Apparent digestibility of various cereal grain by-products in common carp diets. Aquacult Int 7: 277–281. [CrossRef] [Google Scholar]
  • Florín M, Montes C. 1998. Which are the relevant scales to assess primary production of Mediterranean semiarid salt lakes. Int J Ecol Environ Sci 24: 161–177. [Google Scholar]
  • Fránková M, Šumberová K, Potužák J, Vild O. 2017. The role of plant substrate type in shaping the composition and diversity of epiphytic diatom assemblages in a eutrophic reservoir. Fund Appl Limnol/Arch Hydrobiol 189: 117–135. [CrossRef] [Google Scholar]
  • George DG, Hurley MA. 2003. Using a continuous function for residence time to quantify the impact of climate change on the dynamics of thermally stratified lakes. J Limnol 21–26. [Google Scholar]
  • Hanson PC, Bade DL, Carpenter SR, Kratz TK. 2003. Lake metabolism: Relationships with dissolved organic carbon and phosphorus. Limnol Oceanogr 48: 1112–1119. [Google Scholar]
  • Hargreaves JA. 1998. Nitrogen biogeochemistry of aquaculture ponds. Aquaculture 166: 181–212. [Google Scholar]
  • Hecky R, Kilham P. 1988. Nutrient limitation of phytoplankton in freshwater and marine environments: a review of recent evidence on the effects of enrichment 1. Limnol Oceanogr 33: 796–822. [Google Scholar]
  • Hlaváč D, Másílko J, Hartman P, et al. 2015. Effects of common carp (Cyprinus carpio Linnaeus, 1758) supplementary feeding with modified cereals on pond water quality and nutrient budget. J Appl Ichthyol 31: 30–37. [Google Scholar]
  • Hopkins JS, Hamilton RD, Sandier PA, Browdy CL, Stokes AD. 1993. Effect of water exchange rate on production, water quality, effluent characteristics and nitrogen budgets of intensive shrimp ponds. Journal of the World Aquaculture Society 24: 304–320. [Google Scholar]
  • Iglesias C, Mazzeo N, Meerhoff M, et al. 2011. High predation is of key importance for dominance of small-bodied zooplankton in warm shallow lakes: evidence from lakes, fish exclosures and surface sediments. Hydrobiologia 667: 133–147. [Google Scholar]
  • Jeppesen E, Søndergaard M, Sortkjær O, Mortensen E, Kristensen P. 1990. Interactions between phytoplankton, zooplankton and fish in a shallow, hypertrophic lake: a study of phytoplankton collapses in Lake Søbygård, Denmark. Trophic Relationships in Inland Waters. Springer, 149–164. [Google Scholar]
  • Kamarainen AM, Penczykowski RM, Van de Bogert MC, Hanson PC, Carpenter SR. 2009. Phosphorus sources and demand during summer in a eutrophic lake. Aquat Sci 71: 214–227. [Google Scholar]
  • Knoll LB, Morgan A, Vanni MJ, Leach TH, Williamson TJ, Brentrup JA. 2016. Quantifying pelagic phosphorus regeneration using three methods in lakes of varying productivity. Inland Waters 6: 509–522. [Google Scholar]
  • Knud-Hansen CF, Batterson TR, McNabb CD, Harahat IS, Sumantadinata K, Eidman HM. 1991. Nitrogen input, primary productivity and fish yield in fertilized freshwater ponds in Indonesia. Aquaculture 94: 49–63. [Google Scholar]
  • Kopáček J, Prochazkova L, Hejzlar J, Blažka P. 1997. Trends and seasonal patterns of bulk deposition of nutrients in the Czech Republic. Atmos Environ 31: 797–808. [Google Scholar]
  • Laas A, Noges P, Koiv T, Noges T. 2012. High-frequency metabolism study in a large and shallow temperate lake reveals seasonal switching between net autotrophy and net heterotrophy. Hydrobiologia 694: 57–74. [Google Scholar]
  • Lauster GH, Hanson PC, Kratz TK. 2006. Gross primary production and respiration differences among littoral and pelagic habitats in northern Wisconsin lakes. Can J Fish Aquat Sci 63: 1130–1141. [Google Scholar]
  • Lemmens P, Mergeay J, Van Wichelen J, De Meester L, Declerck SA. 2015. The impact of conservation management on the community composition of multiple organism groups in eutrophic interconnected man-made ponds. PLOS ONE 10: e0139371. [CrossRef] [PubMed] [Google Scholar]
  • López-Archilla AI, Molla S, Coleto MC, Guerrero MC, Montes C. 2004. Ecosystem metabolism in a mediterranean shallow lake (Laguna de Santa Olalla, Donana National Park, SW Spain). Wetlands 24: 848–858. [CrossRef] [Google Scholar]
  • MA. 1998. Decree no 274/1998 on storage and use of fertilisers. In: Agriculture (ed.). Czech Ministry of Agriculture, Prague. [Google Scholar]
  • Matsuzaki SS, Usio N, Takamura N, Washitani I. 2009. Contrasting impacts of invasive engineers on freshwater ecosystems: an experiment and meta-analysis. Oecologia 158: 673–686. [CrossRef] [PubMed] [Google Scholar]
  • Mráz J, Máchová J, Kozák P, Pickova J. 2012. Lipid content and composition in common carp–optimization of n‐3 fatty acids in different pond production systems. J Appl Ichthyol 28: 238–244. [Google Scholar]
  • Musil J, Adámek Z, Baranyi C. 2007. Seasonal dynamics of fish assemblage in a pond canal. Aquacul Int 15: 217–226. [CrossRef] [Google Scholar]
  • Musil M, Novotná K, Potužák J, Hůda J, Pechar L. 2014. Impact of topmouth gudgeon (Pseudorasbora parva) on production of common carp (Cyprinus carpio)—question of natural food structure. Biologia 69: 1757–1769. [Google Scholar]
  • Nhan DK, Milstein A, Verdegem MC, Verreth JA. 2006. Food inputs, water quality and nutrient accumulation in integrated pond systems: a multivariate approach. Aquaculture 261: 160–173. [Google Scholar]
  • Oliveira Junior ES, Temmink RJ, Buhler BF, et al. 2019. Benthivorous fish bioturbation reduces methane emissions, but increases total greenhouse gas emissions. Freshw Biol 64: 197–207. [Google Scholar]
  • Pálffy K, Présing M, Vörös L. 2013. Diversity patterns of trait-based phytoplankton functional groups in two basins of a large, shallow lake (Lake Balaton, Hungary) with different trophic state. Aquat Ecol 47: 195–210. [Google Scholar]
  • Pechar L. 2000. Impacts of long-term changes in fishery management on the trophic level water quality in Czech fish ponds. Fish Manag Ecol 7: 23–31. [CrossRef] [Google Scholar]
  • Pokorný J, Hauser V. 2002. The restoration of fish ponds in agricultural landscapes. Ecol Eng 18: 555–574. [Google Scholar]
  • Pokorný J, Pechar L. 2000. Development of fishpond ecosystems in the Czech Republic. Role of management and nutrient input (Limnological review). Sylvia 36: 8–15. [Google Scholar]
  • Pokorný J, Prikryl J, Faina R, et al. 2005. Will fish pond management principles from the temperate zone work in tropical fish ponds. Nat Construc Wetlands 382–399. [Google Scholar]
  • Potužák J, Duras J, Drozd B. 2016. Mass balance of fishponds: are they sources or sinks of phosphorus? Aquacult Int 24: 1725–1745. [CrossRef] [Google Scholar]
  • Potužák J, Hůda J, Pechar L. 2007. Changes in fish production effectivity in eutrophic fishponds-impact of zooplankton structure. Aquacult Int 15: 201–210. [CrossRef] [Google Scholar]
  • Přikryl I. 1996. Development of fishery management in ponds and its reflection in zooplankton structure as a possible criterion of pond's biological value in the Czech Republic. In: Flajšhans, M. (ed.), Collection of scientific work to 75th anniversary of establishment of Research Institute of Fish Culture and Hydrobiology. Vodňany, CZ: USB, 153–166. [Google Scholar]
  • Rachon L, Szumilo G, Brodowska M, Wozniak A. 2015. Nutritional value and mineral composition of grain of selected wheat species depending on the intensity of a production technology. J Elementol 20. [Google Scholar]
  • Rahman M, Verdegem M, Nagelkerke L, Wahab M, Milstein A, Verreth J. 2006. Growth, production and food preference of rohu Labeo rohita (H.) in monoculture and in polyculture with common carp Cyprinus carpio (L.) under fed and non-fed ponds. Aquaculture 257: 359–372. [Google Scholar]
  • Rahman MM, Nagelkerke LA, Verdegem MC, Wahab MA, Verreth JA. 2008. Relationships among water quality, food resources, fish diet and fish growth in polyculture ponds: a multivariate approach. Aquaculture 275: 108–115. [Google Scholar]
  • Reynolds C, Davies P. 2001. Sources and bioavailability of phosphorus fractions in freshwaters: a British perspective. Biolog Rev 76: 27–64. [CrossRef] [Google Scholar]
  • Rothschein J. 1983. Kolobeh fosforu a ryp vo vodárenských nádřziach. Vodní hosp B33: 9–13. [Google Scholar]
  • Rutegwa M, Gebauer R, Veselý L, et al. 2019. Diffusive methane emissions from temperate semi-intensive carp ponds. Aquacult Environ Interact 11: 19–30. [CrossRef] [Google Scholar]
  • Sadro S, Melack JM, MacIntyre S. 2011. Depth-integrated estimates of ecosystem metabolism in a high-elevation lake (Emerald Lake, Sierra Nevada, California). Limnol Oceanogr 56: 1764–1780. [Google Scholar]
  • Scheffer M, Carpenter S, Foley JA, Folke, C, Walkerk B. 2001. Catastrophic shifts in ecosystems. Nature 431: 591–596. [Google Scholar]
  • Schindler DW, Hecky R, Findlay D, et al. 2008. Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment. Proc Natl Acad Sci 105: 11254–11258. [Google Scholar]
  • Sommer U, Adrian R, De Senerpont Domis L, et al. 2012. Beyond the Plankton Ecology Group (PEG) model: mechanisms driving plankton succession. Annu Rev Ecol Evol Syst 43: 429–448. [Google Scholar]
  • Sondergaard M, Jensen JP, Jeppesen E. 2003. Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia 506: 135–145. [Google Scholar]
  • Staehr PA, Bade D, Van de Bogert MC, et al. 2010. Lake metabolism and the diel oxygen technique: State of the science. Limnol Oceanogr Methods 8: 628–644. [Google Scholar]
  • Staehr PA, Sand-Jensen K. 2007. Temporal dynamics and regulation of lake metabolism. Limnol Oceanogr 52: 108–120. [Google Scholar]
  • Steffens W. 1997. Effects of variation in essential fatty acids in fish feeds on nutritive value of freshwater fish for humans. Aquaculture 151: 97–119. [Google Scholar]
  • Steffens W, Wirth M. 2007. Influence of nutrition on the lipid quality of pond fish: common carp (Cyprinus carpio) and tench (Tinca tinca). Aquac Int 15: 313–319. [Google Scholar]
  • Svobodova Z, Lloyd R, Baddow L, Essex C, Machova J, Vykusova B. 1993. Water quality and fish health. EIFAC Technical paper 54: 59. [Google Scholar]
  • Tsai J-W, Kratz TK, Hanson PC, et al. 2008. Seasonal dynamics, typhoons and the regulation of lake metabolism in a subtropical humic lake. Freshw Biol 53: 1929–1941. [Google Scholar]
  • Vollenweider RA, Kerekes JJ. 1982. Eutrophication of waters. Monitoring assessment and control. Environment Directorate OECD, Paris. 154 p. [Google Scholar]
  • Vrba J, Vyhnálek V, Hejzlar J, Nedoma J. 1995. Comparison of phosphorus deficiency indices during a spring phytoplankton bloom in a eutrophic reservoir. Freshw Biol 33: 73–81. [Google Scholar]
  • Wetzel RG. 2001. Limnology: Lake and River Ecosystems, 3rd edn. ed. Elsevier, San Diego: Academic Press. [Google Scholar]
  • Wezel A, Robin J, Guerin M, Arthaud F, Vallod D. 2013. Management effects on water quality, sediments and fish production in extensive fish ponds in the Dombes region, France. Limnologica 43: 210–218. [Google Scholar]
  • Woynarovich A, Bueno PB, Altan O, et al. 2011. Better management practices for carp production in Central and Eastern Europe, the Caucasus and Central Asia. FAO, Rome: FAO Fisheries and Aquaculture Technical Paper. [Google Scholar]
  • Zhang K, Tian X-l, Dong S-l, Feng J, He R-p. 2016. An experimental study on the budget of organic carbon in polyculture systems of swimming crab with white shrimp and short-necked clam. Aquaculture 451: 58–64. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.