Open Access
Knowl. Manag. Aquat. Ecosyst.
Number 420, 2019
Article Number 50
Number of page(s) 12
Published online 04 December 2019
  • Abdel-Baki AS, Dkhil MA, Al-Quraishy S. 2011. Bioaccumulation of some heavy metals in tilapia fish relevant to their concentration in water and sediment of Wadi Hanifah, Saudi Arabia. Afr J Biotechnol 10: 2541–2547. [Google Scholar]
  • Agah H, Leermakers M, Elskens M, Fatemi SMR, Baeyens W. 2009. Accumulation of trace metals in the muscles and liver tissues of five fish species from the Persian Gulf. Environ Monit Assess 157: 499–514. [CrossRef] [PubMed] [Google Scholar]
  • Al-Shami S, Rawi C, Nor S, Ahmad A, Ali A. 2010. Morphological Deformities in Chironomus spp. (Diptera:Chironomidae) Larvae as a Tool for Impact Assessment of Anthropogenic and Environmental Stresses on Three Rivers in the Juru River System, Penang, Malaysia. Environ Entomol 39: 210–222. [CrossRef] [PubMed] [Google Scholar]
  • Bennett C. 2007. A seven year of the life cycle of the mayfly Ephemera danica . Freshwater Forum 27: 3–14. [Google Scholar]
  • Bervoets L, Blust R, De Wit M, Verheyen R. 1997. Relationships between river sediments characteristics and trace metal concentrations in tubificid worms and chironomid larvae. Environ Pollut 95: 345–356. [Google Scholar]
  • Besser J, Brumbaugh W, Allert A, Poulton B, Schmitt C, Ingersoll CG. 2009. Ecological impacts of lead mining on Ozark streams: toxicity of sediment and pore water. Ecotoxicol Environ Saf 72: 516–526. [CrossRef] [PubMed] [Google Scholar]
  • Bonada N, Prat N, Resh HV, Statzner B. 2006. Developments in aquatic insect biomonitoring: a comparative analysis of recent approaches. Annu Rev Entomol 51: 495–523. [CrossRef] [PubMed] [Google Scholar]
  • Božanić M, Todorović D, Živić M, Perić-Mataruga V, Marković Z, Živić I. 2018. Influence of a trout farm on antioxidant defense in larvae of Ephemera danica (Insecta: Ephemeroptera). Knowl Manag Aquat Ecol 47: 419–447. [Google Scholar]
  • Božanić M, Marković Z, Živić M, et al. 2019. Mouthpart deformities of Chironomus plumosus larvae caused by increased concentrations of copper in sediment from carp fish pond. Turk J Fish Aquat Sci 19: 251–259. [Google Scholar]
  • Brown BE. 1977. Effects of mine drainage on the River Hayle, Cornwall, factors affecting concentrations of copper, zinc and iron in water, sediments and dominant invertebrate fauna. Hydrobiologia 52: 221–233. [Google Scholar]
  • Burridge L, Weis JS, Cabello F, Pizarro J, Bostick K. 2010. Chemical use in salmon aquaculture: a review of current practices and possible environmental effects. Aquaculture 306: 7–23. [Google Scholar]
  • Burrows G, Whitton BA. 1983. Heavy metals in water, sediments and invertebrates from a metal-contaminated river free of organic pollution. Hydrobiologia 106: 263–273. [Google Scholar]
  • Cain DJ, Luoma SN, Carter JL, Fend SV. 1992. Aquatic insects as bioindicators of trace element contamination in cobble-bottom rivers and streams. Can J Fish Aquat Sci 49: 2141–2154. [Google Scholar]
  • Cannon HL, Connally GG, Epstein JB, Parker JG, Thorton I, Wixson G. 1978. Rocks: geological sources of most trace elements. In: Report to the workshop at southscas plantation Captiva Island, FL, US. Geochemistry and the Environment 3: 17–31. [Google Scholar]
  • Çevik F, Göksu M, Derici O, Findik O. 2009. An assessment of metal pollution in surface sediments of Seyhan dam by using enrichment factor, geoaccumulation index and statistical analyses. Environ Monit Assess 152: 309–317. [Google Scholar]
  • Clements W, Kiffney P. 1994. Integrated laboratory and field approach for assessing impacts of heavy metals at the Arkansas river, Colorado. Environ Toxicol Chem 13: 397–404. [Google Scholar]
  • Clements WH. 1991. Community responses of stream organisms to heavy metals: a review of descriptive and experimental approaches. In: Newman MC, McIntosh AW, ed. Ecotoxicology of metals: current con-cepts and applications, Lewis Publishers, Chelsea, 363–391. [Google Scholar]
  • Cohen T, Hee S, Ambrose R. 2001. Trace metals in fish and invertebrates of three California Coastal Wetlands. Mar Pollut Bull 42: 232–242. [Google Scholar]
  • Corbi JJ, Froehlich CG, Trivinho-Strixino S, Dos Santos A. 2010. Bioaccumulation of metals in aquatic insects of streams located in areas with sugar cane cultivation. Químca Nova 33:644–648. [CrossRef] [Google Scholar]
  • Corbi JJ, Trivinho-Strixino S, Dos Santos A. 2008. Environmental evaluation of metals in sediments and dragonflies due to sugar cane cultivation in Neotropical streams. Water Air Soil Pollut 195: 325–333. [Google Scholar]
  • De Almeida EA, Bainy ACD, De Melo Loureiro AP, et al. 2007. Oxidative stress in Perna perna and other bivalves as indicators of environmental stress in the Brazilian marine environment: antioxidants, lipid peroxidation and DNA damage. Comp Biochem Physiol Part A 146: 588–600. [CrossRef] [Google Scholar]
  • De Jonge M, Lofts S, Bervoets L, Blust R. 2014. Relating metal exposure and chemical speciation to trace metal accumulation in aquatic insects under natural field conditions. Sci Total Environ 496: 11–21. [CrossRef] [PubMed] [Google Scholar]
  • De Pauw N, Gabriëls W, Goethals P. 2006. River monitoring and assessment methods based on macroinvertebrates. In Ziglio G, Siligardi M, Flaim G, eds. Biological monitoring of rivers: applications and perspectives. Chichester, UK: John Wiley & Sons, 113–134. [Google Scholar]
  • Despotović S. 2013. Parameters of the antioxidant defence system and heavy metal concentrations in the visceral mass of selected snail and mussel species from the Danube, Tisa and Velika Morava rivers. Doctoral dissertation, University of Belgrade, 137 p. [Google Scholar]
  • Dolédec S, Chessel D. 1994. Co-inertia analysis: an alternative method for studying species-environment relationships. Freshw Biol 31: 277–294. [Google Scholar]
  • Eisler R. 1998. Nickel Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review. U.S. Patuxent Wildlife Research Center, Washington DC, 76 p. [Google Scholar]
  • Eyres JP, Pugh-Thomas M. 1978. Heavy metal pollution of the River Irwell (Lancashire, UK) demonstrated by analysis of substrate material and macroinvertebrate tissue. Environ Pollut 16: 129–136. [Google Scholar]
  • Ezejiofor TIN, Ezejiofor AN, Udebuani AC, et al. 2013. Environmental metals pollutants load of a densely populated and heavily industrialized commercial city of Aba, Nigeria. J Toxicol Environ Health Sci 5: 1–11. [CrossRef] [Google Scholar]
  • Fernandes C, Fontainhas-Fernandes A, Peixoto F, Salgado MA. 2007. Bioaccumulation of heavy metals in Liza saliens from the Esomriz-Paramos coastal lagoon, Portugal. Ecotoxicol Environ Saf 66: 426–431. [CrossRef] [PubMed] [Google Scholar]
  • Fialkowski W, Klonowska-Olejnika M, Smith BD, Rainbow PS. 2003. Mayfly larvae (Baetis rhodani and B. vernus) as biomonitors of trace metal pollution in streams of a catchment draining a zinc and lead mining area of Upper Silesia, Poland. Environ Pollut 121: 253–267. [Google Scholar]
  • Flemming CA, Trevors JT. 1989. Copper toxicity and chemistry in the environment: a review. Water Air Soil Pollut 44: 143–158. [Google Scholar]
  • Gavrilović Lj, Dukić D. 2002. River of Serbia. Institute for textbook publishing and teaching aids, Belgrade, 218 p. (in Serbian). [Google Scholar]
  • Geffard O, Geffard A, His E, Budzinski H. 2003. Assesment of the bioavaliability and toxicity of sediment associated polycyclic aromatic hydrocarbons and heavy metals applied to Crassostrea gigas embryos and larvae. Mar Pollut Bull 46: 481–490. [Google Scholar]
  • Girgin S, Kazancı N, Dügel M. 2010. Relationship between aquatic insects and heavy metals in an urbanstream using multivariate techniques. Int J Environ Sci Technol 7: 653–664. [CrossRef] [Google Scholar]
  • Gomes T, Gonzalez-Rey M, Rodríguez-Romero A, et al. 2013. Biomarkers in Nereis diversicolor (Polychaeta: Nereididae) as management tools for environmental assessment on the southwest Iberian coast. Sci Mar 77: 69–78. [Google Scholar]
  • Goodyear KL, McNeill S. 1999. Bioaccumulation of heavy metals by aquatic macro-invertebrates of different feeding guilds: a review. Sci Total Environ 229: 1–19. [Google Scholar]
  • Gremyatchikh V, Tomilina II, Grebenyuk LP. 2009. The effect of mercury chloride on morphofunctional parameters in Chironomus riparius Meigen (Diptera, Chironomidae) larvae. Inland Water Biol 1: 89–95. [CrossRef] [Google Scholar]
  • Gundacker C. 2000. Comparison of heavy metal bioaccumulation in freshwater molluscs of urban river habitats in Vienna. Environ Pollut 110: 61–71. [Google Scholar]
  • Hamidian AH, Zareh M, Poorbagher H, Vaziri L, Ashrafi S. 2016. Heavy metal bioaccumulation in sediment, common reed, algae, and blood worm from the Shoor river, Iran. Toxicol Ind Health 32: 398–409. [CrossRef] [PubMed] [Google Scholar]
  • Hare L, Tessier A, Campbell PGC. 1991. Trace element distribution in aquatic insects: variations among genera, elements, and lakes. Can J Fish Aquat Sci 48: 1481–1491. [Google Scholar]
  • Harrahy EA, Clements WH. 1997. Toxicity and bioaccumulation of a mixture of heavy metals in Chironomus tentans (Dipter: Chironomidae) in synthetic sediment. Environ Toxicol Chem 16: 317–327. [Google Scholar]
  • Hellawell JM. 1986. Biological Indicators of Freshwater Pollution and Environmental Management. London & New York: Elsevier Applied Science Publishers, 518 p. [Google Scholar]
  • Hsu L-C, Huang C-Y, Chuang Y-H, et al. 2016. Accumulation of heavy metals and trace elements in fluvial sediments received effluents from traditional and semiconductor industries. Sci Rep 6: 34250. [CrossRef] [PubMed] [Google Scholar]
  • Iversen TM. 1995. Fish farming in Denmark: Environmental impact of regulative legislation. Water Sci Technol 31: 73–84. [Google Scholar]
  • Jop KM. 1991. Concentration of metals in various larval stages of four Ephemeroptera species. Bull Environ Contam Toxicol 46: 901–905. [CrossRef] [PubMed] [Google Scholar]
  • Kamunde C, Grosell M, Higgs D, Wood C. 2002. Copper metabolism in actively growing rainbow trout (Onchorhynchus mykiss): interactions between dietary and waterborne copper uptake. J Exp Biol 205: 279–290. [PubMed] [Google Scholar]
  • Kotaś J, Stasicka Z. 2000. Chromium occurence in the environment and methods of it speciation. Environ Pollut 107: 263–283. [Google Scholar]
  • Kovačević-Majkić J. 2009. Hydrogeographic study of the Skrapež River. Geographical Institute “Jovan Cvijić” SANU, Serbian Geographical Society, Belgrade, Special Issues 74: 133 p. (in Serbian) [Google Scholar]
  • Kronvang B, Ertebjerg G, Grant R, Kristensen P, Hovmand M, Kirkegard J. 1993. Nationwide monitoring of nutrients and their ecological effects: state of the Danish aquatic environmental. Ambio 22: 176–187. [Google Scholar]
  • Leonard EM, Wood CM. 2013. Acute toxicity, critical body residues, Michaelis–Menten analysis of bioaccumulation, and ionoregulatory disturbance in response to waterborne nickel in four invertebrates: Chironomus riparius, Lymnaea stagnalis, Lumbriculus variegatus and Daphnia pulex . Comp Biochem Physiol Part C 158: 10–21. [Google Scholar]
  • Liao PB. 1970. Pollution potential of salmonid fish hatcheries. Water Sewage Works 117: 291–297. [Google Scholar]
  • MacDonald DD, Ingersoll CG, Berger TA. 2000. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems. Arch Environ Contam Toxicol 39: 20–31. [CrossRef] [PubMed] [Google Scholar]
  • Mackay D, Fraser A. 2000. Bioaccumulation of persistent organic chemicals: mechanisms and models. Environ Pollut 110: 375–391. [Google Scholar]
  • Malik N, Biswas AK, Qureshi TA, Borana K, Virha R. 2010. Bioaccumulation of heavy metals in fish tissues of a freshwater lake of Bhopal. Environ Monit Assess 160: 267–276. [CrossRef] [PubMed] [Google Scholar]
  • Mertz W. 1986. Trace Elements in Human and Animal Nutrition. London: Academic Press, 560 p. [Google Scholar]
  • Miller P, Lanno R, McMaster M, Dixon D. 1993. Relative contributions of dietary and waterborne copper to tissue copper burdens and waterborne copper tolerance in rainbow trout (Onchorhynchus mykiss). Can J Fish Aquat Sci 50: 1683–1689. [Google Scholar]
  • Muyssen BTA, Brix KV, DeForest DK, Janssen CR. 2004. Nickel essentiality and homeostasis in aquatic organisms. Environ Rev 12: 113–131. [Google Scholar]
  • Notten MJM, Oosthoek AJP, Rozema J, Aerts R. 2005. Heavy metal concentrations in a soil-plant-snail food chain along a terrestrial soil pollution gradient. Environ Pollut 138: 178–190. [Google Scholar]
  • Nummelin M, Lodenius M, Tulisalo E, Hirvonen H, Alanko T. 2007. Predatory insects as bioindicators of heavy metal pollution. Environ Pollut 145: 339–347. [Google Scholar]
  • Official Gazette of the Republic of Serbia 50/2012 (2012) Regulation on limit values of pollutants in surface and groundwaters and sediments and deadlines for achieving them. Accessed 18 May 2012. (in Serbian) [Google Scholar]
  • Poulton BC, Beitinger TL, Stewart KW. 1989. The Effect of Hexavalent Chromium on the Critical Thermal Maximum and Body Burden of Clopper Clio (Plecoptera: Perlodidae). Arch Environ Contam Toxicol 18: 594–600. [Google Scholar]
  • Pourang N. 1996. Heavy metal concentrations in surficial sediments and benthic macroinvertebrates from Anzali wetland, Iran. Hydrobiologia 331: 53–61. [Google Scholar]
  • Rainbow PS, Wang WX. 2001. Comparative assimilation of Cr, Cr, Se, and Zn by the barnacle Elminius modestus from phytoplankton and zooplankton diets. Mar Ecol Prog Ser 218: 239–248. [Google Scholar]
  • Rainbow PS. 2002. Trace metal concentrations in aquatic invertebrates: why and so what? Environ Pollut 120: 497–507. [Google Scholar]
  • Sakan S, Đorđević D, Dević G, Relić D, Anđelković I, Đuričić J. 2011. A study of trace element contamination in river sediments in Serbia using microwave-assisted aqua regia digestion and multivariate statistical analysis. Microchem J 99: 492–502. [Google Scholar]
  • Santos A, Oliveira LC, Botero WG, et al. 2009. Distribuição e biodisponibilidade de crômio em solos contaminados por resíduos de couro. Quimica Nova 7: 1693–1697. [Google Scholar]
  • Schueler T. 2000. Cars are leading source of metal loads in California. The Practice of Watershed Protection, Center for Watershed Protection, Ellicott City, MD. pp. 44. [Google Scholar]
  • Shahbaz M, Hashmi MZ, Malik RN, Yasmin A. 2013. Relationship between heavy metals concentrations in egret species, their environment and food chain differences from two Headworks of Pakistan. Chemosphere 93: 274–282. [CrossRef] [PubMed] [Google Scholar]
  • Shulkin VM, Presleyb BJ, Kavunc VI. 2003. Metal concentrations in mussel Crenomytilus grayanus and oyster Crassostrea gigas in relation to contamination of ambient sediments. Environ Int 29: 493–502. [CrossRef] [PubMed] [Google Scholar]
  • Snodgrass J, Casey R, Joseph D, Simon J. 2008. Microcosm investigationsof storm water pond sediment toxicity to embryonic and larval amphibians: variation in sensitivity among species. Environ Pollut 154: 291–297. [Google Scholar]
  • Stohs S, Bagchi D. 1995. Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18: 321–336. [CrossRef] [PubMed] [Google Scholar]
  • Strom D, Simpson SL, Batley GE, Jolley DF. 2011. The influence of sediment particle size and organic carbon on toxicity of copper to benthic invertebrates in oxic/suboxic surface sediments. Environ Toxicol Chem 30: 1599–1610. [CrossRef] [PubMed] [Google Scholar]
  • Svensson B. 1977. Life cycle, energy fluctuations and sexual differentiation in Ephemera danica (Ephemeroptera), a stream-living mayfly. Oikos 29: 78–86. [Google Scholar]
  • Thioulouse J, Chessel D, Dolédec S, Olivier JM. 1997. ADE-4: a multivariate analysis and graphical display software. Stat Comput 7: 75–83. [Google Scholar]
  • Triquet-Amiard C, Amiard J-C, Rainbow PS. 2013. Ecological Biomarkers: Indicators of Ecotoxicological Effects. CRC Press, Taylor & Francis Group. 450 p. [Google Scholar]
  • USEPA. 1994. Method 200.7. Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry. Washington D.C. [Google Scholar]
  • USEPA. 1996. Method 200.3. Sample Preparation Procedure for Spectrochemical Determination of Total Recoverable Elements in Biological Tissues. Washington D.C. [Google Scholar]
  • Valko M, Jomova K, Rhodes CJ, Kuča K, Musílek K. 2016. Redox- and non-redox-metal-induced formation of free radicals and their role in human disease. Arch Toxicol 90: 1–37. [CrossRef] [PubMed] [Google Scholar]
  • Vicente-Martorell JJ, Galindo-Riaño MD, García-Vargas M, Granado-Castro MD. 2009. Bioavailability of heavy metals monitoring water, sediments and fish species from a polluted estuary. J Hazard Mater 162: 823–836. [Google Scholar]
  • Vranković J, Živić M, Radojević A, et al. 2018. Evaluation of oxidative stress biomarkers in the freshwater gammarid Gammarus dulensis exposed to trout farm outputs. Ecotox Environ Safe 163: 84–95. [CrossRef] [PubMed] [Google Scholar]
  • Wang WX. 2002. Interactions of trace metals and different marine food chains. Mar Ecol Prog Ser 243: 295–309. [Google Scholar]
  • Watras CJ, MacFarlane J, Morel FMM. 1985. Nickel Accumulation by Scenedesmus and Daphnia: Food-Chain Transport and Geochemical Implications. Can J Fish Aquat Sci 42: 724–730. [Google Scholar]
  • Waykar B, Deshmukh G. 2012. Evaluation of bivalves as bioindicators of metal pollution in freshwater. Bull Environ Contam Toxicol 88: 48–53. [CrossRef] [PubMed] [Google Scholar]
  • Weston DP, Phillips MJ, Kelly LA. 1996. Environmental impacts of salmonid culture. Dev Aquacult Fish Sci 29: 919–967. [Google Scholar]
  • Winkelmann C, Koop JHE. 2007. The management of metabolic energy storage during the life cycle of mayflies: a comparative field investigation of the collector-gatherer Ephemera danica and the scraper Rhithrogena semicolorata . J Comp Physiol B 177: 119–128. [CrossRef] [PubMed] [Google Scholar]
  • Zhang C, Yu Z, Zeng G, et al. 2014. Effects of sediment geochemical properties on heavy metal bioavailability. Environ Internat 73: 270–281. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.