Open Access
Issue
Knowl. Manag. Aquat. Ecosyst.
Number 419, 2018
Article Number 18
Number of page(s) 14
DOI https://doi.org/10.1051/kmae/2018005
Published online 27 March 2018
  • Abe S, Uchida K, Nagumo T, Tanaka J. 2007. Alterations in the biomass-specific productivity of periphyton assemblages mediated by fish grazing. Freshwater Biol 52: 1486–1493. [CrossRef] [Google Scholar]
  • Appelberg M. 2000. Swedish standard methods for sampling freshwater fish with multi-mesh gillnets: stratified random sampling with Nordic multi-mesh gillnets provide reliable whole-lake estimates of the relative abundance and biomass of freshwater temperate lakes. Sweden: Fiskeriverket Information. [Google Scholar]
  • Barbour MT, Gerritsen J, Snyder DB, Stribling JB. 1999. Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates and fish. Washington: United States Environmental Protection Agency. [Google Scholar]
  • Blanco S, Romo S, Fernández-Aláez M, Bécares E. 2008. Response of epiphytic algae to nutrient loading and fish density in a shallow lake: a mesocosm experiment. Hydrobiologia 600: 65–76. [CrossRef] [Google Scholar]
  • Blanco S, Cejudo‐Figueiras C, Álvarez‐Blanco I. 2014. Epiphytic diatoms along environmental gradients in Western European shallow lakes. CLEAN-Soil Air Water 42: 229–235. [Google Scholar]
  • Bowes MJ, Smith JT, Hilton J, Sturt MM, Armitage PD. 2007. Periphyton biomass response to changing phosphorus concentrations in a nutrient impacted river: a new methodology for phosphorus target setting. Can J Fish Aquat Sci 64: 227–238. [CrossRef] [Google Scholar]
  • Carlson RE. 1977. A trophic state index for lakes. Limnol Oceanogr 22: 361–369. [Google Scholar]
  • Cattaneo A, Galanti G, Gentinetta S, Romo S. 1998. Epiphytic algae and macroinvertebrates on submerged and floating-leaved macrophytes in an Italian lake. Freshwater Biol 39: 725–740. [CrossRef] [Google Scholar]
  • Cox EJ. 1996. Identification of freshwater diatoms from live material. London: Chapman and Hall, 156 p. [Google Scholar]
  • Dawidek J, Sobolewski S, Turczyński M. 2004. Transformations of catchment-areas of lakes converted into storage reservoirs in the Wieprz-Krzna Canal system. Limnol Rev 4: 67–74. [Google Scholar]
  • de Normalisation CE. 2005. Water Quality–Sampling of Fish with Multi-Mesh Gillnets (EN 14757). Brussels: European Committee for Standardization. [Google Scholar]
  • DIN EN ISO 29441. 2010. Water quality − Determination of total nitrogen after UV digestion − Method using flow analysis (CFA and FIA) and spectrometric detection. 29441. [Google Scholar]
  • Downing JA, McCauley E. 1992. The nitrogen: phosphorus relationship in lakes. Limnol Oceanogr 37: 936–945. [CrossRef] [Google Scholar]
  • de Souza ML. Pellegrini BG, Ferragut C. 2015. Periphytic algal community structure in relation to seasonal variation and macrophyte richness in a shallow tropical reservoir. Hydrobiologia 755: 183–196. [CrossRef] [Google Scholar]
  • Erhard D. Gross EM. 2006. Allelopathic activity of Elodea canadensis and Elodea nuttallii against epiphytes and phytoplankton. Aquat Bot 85: 203–211. [CrossRef] [Google Scholar]
  • France RL, Howell ET, Paterson MJ, Welbourn PM. 1991. Relationship between littoral grazers and metaphytic algae in five softwater lakes. Hydrobiologia 220: 9–27. [CrossRef] [Google Scholar]
  • Gross EM, Feldbaum C, Graf A. 2003. Epiphyte biomass and elemental composition on submersed macrophytes in shallow eutrophic lakes. Hydrobiologia 506: 559–565. [CrossRef] [Google Scholar]
  • Guariento RD, Carneiro LS, Caliman A, Bozelli RL, Leal JJF, Esteves FDA. 2010. Interactive effects of omnivorous fish and nutrient loading on net productivity regulation of phytoplankton and periphyton. Aquatic Biol 10: 273–282. [CrossRef] [Google Scholar]
  • Hansson LA. 1992. Factors regulating periphytic algal biomass. Limnol Oceanogr 37: 322–328. [CrossRef] [Google Scholar]
  • Hillebrand H. 2002. Top-down versus bottom-up control of autotrophic biomass − a meta-analysis on experiments with periphyton. J North Am Benthological Soc 21: 349–369. [CrossRef] [Google Scholar]
  • Hillebrand H, Dürselen CD, Kirschtel D, Pollingher U, Zohary T. 1999. Biovolume calculation for pelagic and benthic microalgae. J Phycol 35: 403–424. [CrossRef] [Google Scholar]
  • Hofmann G. 1994. Epiphytic diatoms in lakes and their utility as indicators of trophy, J. Cramer. Berlin, Stuttgart: Bibliotheca Diatomologica, 241 p. (in German). [Google Scholar]
  • Karosienė J, Kasperovičienė J. 2008. Seasonal succession of epiphyton algal communities on Phragmites australis (Cav.) Trin. ex Stend. in a mesoeutrophic lake. Ekologija 54: 32–39. [CrossRef] [Google Scholar]
  • Kernan MR, Battarbee RW, Moss B. 2010. Climate change impacts on freshwater ecosystems, Vol. 314. Oxford: Wiley-Blackwell. [CrossRef] [Google Scholar]
  • Kitner M, Poulícková A, 2003. Littoral diatoms as indicators for the eutrophication of shallow lakes. Hydrobiologia 506: 519–524. [CrossRef] [Google Scholar]
  • Komárek J. 2013. Cyanoprokaryota 3: Heterocytous Genera. In: Budel B, Gartner G, Krienitz L, Schagerl M, eds. Süßwasserflora von Mitteleuropa, 19/3. Berlin: Spektrum Akademischer Verlag, 1131 p. [Google Scholar]
  • Komárek J, Anagnostidis K. 1999. Chroococcales T 1. In: Ettl H, Gärtner G, Gerloff J, Heyning H, Mollenhauer D, eds. Süßwasserflora von Mitteleuropa. Heidelberg, Berlin: Spektrum Akademischer Verlag, GmbH, 548 p. [Google Scholar]
  • Komárek J, Anagnostidis K. 2000. Chroococcales T 1. In: Ettl H, Gärtner G, Gerloff J, Heyning H, Mollenhauer D, eds. Süßwasserflora von Mitteleuropa. Heidelberg, Berlin: Spektrum Akademischer Verlag, GmbH, 548 p. [Google Scholar]
  • Komárek J, Anagnostidis K. 2005. Oscillatoriales. T 2. In: Ettl H, Gärtner G, Gerloff J, Heyning H, Mollenhauer D, eds. Süßwasserflora von Mitteleuropa. München: Spektrum Akademischer Verlag, 759 p. [Google Scholar]
  • Komárek J, Fott B. 1983. Chlorophyceae (Grünalgen) Ordnung: Chlorococcales. In: Huber-Pestalozzi G, ed. Das Phytoplankton des Süßfwassers, 7(1). Stuttgart: Schweizerbart. [Google Scholar]
  • Krammer K, Lange-Bertalot H. 2004a. Bacillariophyceae. 4. Achnanthaceae, Kritische Ergänzungen zu Achnanhtes s. l., Navicula s. str., Gomphonema. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D, eds. Süsswasserflora von Mitteleuropa, Bacillariophyceae. Berlin, Gustav Fischer: Spectrum Akademischer Verlag, 468 p. [Google Scholar]
  • Krammer K, Lange-Bertalot H. 2004b. Bacillariophyceae. 3. Centrales, Fragilariaceae, Eunotiaceae. In: Ettl H, Gerloff J, Heyning H, Mollenhauer D, eds. Süsswasserflora von Mitteleuropa. Berlin, Gustav Fischer: Spektrum Akademischer Verlag, 598 p. [Google Scholar]
  • Krammer K, Lange-Bertalot H. 2007a. Bacillariophyceae. 2. Bacillariaceae, Epithemiaceae, Surirellaceae. In: Ettl H, Gerloff J, Heyning H, Mollenhauer D, eds. Süsswasserflora von Mitteleuropa. München: Spektrum Akademischer Verlag. [Google Scholar]
  • Krammer K, Lange-Bertalot H. 2007b. Bacillariophyceae. 1. Naviculaceae. In: Ettl H, Gerloff J, Heyning H, Mollenhauer D, eds. Süsswasserflora von Mitteleuropa, 2(1). München: Spektrum Akademischer Verlag. [Google Scholar]
  • Kufel L, Pasztaleniec A, Czapla G, Strzałek M. 2007. Constitutive allelochemicals from Stratiotes aloides L. affect both biomass and community structure of phytoplankton. Pol J Ecol 55: 387–393. [Google Scholar]
  • Lalonde S, Downing JA. 1991. Epiphyton biomass is related to lake trophic status, depth, and macrophyte architecture. Can J Fish Aquat Sci 48: 2285–2291. [CrossRef] [Google Scholar]
  • Laugaste R, Reunanen M. 2005. The composition and density of epiphyton on some macrophyte species in the partly meromictic Lake Verevi. Hydrobiologia 182: 137–150. [CrossRef] [Google Scholar]
  • LeGresley M, McDermott G. 2010. Counting chamber methods for quantitative phytoplankton analysis—haemocytometer, Palmer-Maloney cell and Sedgewick-Rafter cell. Microscopic and molecular methods for quantitative phytoplankton analysis. UNESCO (IOC Manuals and Guides), pp. 25–30. [Google Scholar]
  • Leira M, Cantonati M. 2008. Effects of water-level fluctuations on lakes: an annotated bibliography. Hydrobiologia 613: 171–184. [CrossRef] [Google Scholar]
  • Liboriussen L, Jeppesen E. 2003. Temporal dynamics in epipelic, pelagic and epiphytic algal production in a clear and a turbid shallow lake. Freshwater Biol 48: 418–431. [CrossRef] [Google Scholar]
  • Liboriussen L, Jeppesen E. 2006. Structure, biomass, production and depth distribution of periphyton on artificial substratum in shallow lakes with contrasting nutrient concentrations. Freshwater Biol 51: 95–109. [CrossRef] [Google Scholar]
  • Lowe RL. 1996. Periphyton patterns in lakes. In Stevenson RJ, Bothwell ML, Lowe RL, eds.Algal ecology: freshwater benthic ecosystems. San Diego: Academic Press, pp. 57–76. [Google Scholar]
  • Maberly SC, King L, Dent MM, Jones RI, Gibson CE, 2002. Nutrient limitation of phytoplankton and periphyton growth in upland lakes. Freshwater Biol 47: 2136–2152. [CrossRef] [Google Scholar]
  • Messyasz B, Kuczyńska-Kippen N. 2006. Periphytic algal communities: a comparison of Typha angustifolia L. and Chara tomentosa L. beds in three shallow lakes (West Poland). Pol J Ecol 54: 15–27. [Google Scholar]
  • Mieczan T, Adamczuk M, Tarkowska-Kukuryk M, Nawrot D. 2016. Effect of water chemistry on zooplanktonic and microbial communities across freshwater ecotones in different macrophyte-dominated shallow lakes. J Limnol 75: 262–274. [Google Scholar]
  • Pawlik-Skowrońska B, Toporowska M. 2016. How to mitigate cyanobacterial blooms and cyanotoxin production in eutrophic water reservoirs? Hydrobiologia 778: 45–59. [CrossRef] [Google Scholar]
  • Pfeiffer TŽ, Mihaljević M, Špoljarić D, Stević F, Plenković-Moraj A. 2015. The disturbance-driven changes of periphytic algal communities in a Danubian floodplain lake. Knowl Manag Aquat Ecosyst 416: 02. [CrossRef] [EDP Sciences] [Google Scholar]
  • PN-EN 872. 2007. Water quality − Determination of suspensions − The method using filtration through glass fiber filters. Warsaw: PKN. [Google Scholar]
  • PN-C-04576-4. 2004. Water and sewage − Studies on the content of nitrogen compounds − Determination of ammonium nitrogen in water by direct nesslerization. Warsaw: PKN. [Google Scholar]
  • PN-EN ISO 6878. 2004. Water quality − Determination of phosphorus − Ammonium molybdate spectrometric method. Warsaw: PKN. [Google Scholar]
  • PN-ISO 10260. 2002. Water quality. Measurement of biochemical parameters. Spectrophotometrical determination of chlorophyll-a concentration. Warsaw: PKN. [Google Scholar]
  • Poulíčková A, Kitner M, Hašler P. 2006. Vertical distribution of attached algae in shallow fishponds of different trophic status. Biologia 61: 1–9. [CrossRef] [Google Scholar]
  • Redfield AC. 1958. The biological control of chemical factors in the environment. Am Sci 46: 205–221. [Google Scholar]
  • Reynolds CS. 2006. The ecology of phytoplankton. Cambridge UK: Cambridge University Press. [CrossRef] [Google Scholar]
  • Rodríguez P, Tell G, Pizarro H. 2011. Epiphytic algal biodiversity in humic shallow lakes from the Lower Paraná River Basin (Argentina). Wetlands 31: 53–63. [CrossRef] [Google Scholar]
  • Round FE. 1991. Diatoms in river water-monitoring studies. J Applied Phycol 3: 129–145. [CrossRef] [Google Scholar]
  • Sender J. 2012. Aquatic and rush macroflora. In Kornijów R, Buczyński P, eds.Lake Skomielno (Łęczna-Włodawa Lakeland, Eastern Poland). Environment monography, pp. 83–20. [Google Scholar]
  • Sender J. 2016. The effect of riparian forest shade on the structural characteristics of macrophytes in a mid-forest lake. AEER 14: 249–261. [CrossRef] [Google Scholar]
  • Shannon CE, Weaver W. 1949. The mathematical theory of communication. Urbana, Illinois: University of Illinois Press. [Google Scholar]
  • Song YZ, Qin BQ, Gao G. 2007. Effect of nutrient on periphytic algae and phytoplankton. J Lake Sci 19: 125–130. [CrossRef] [Google Scholar]
  • Suchora M. 2012. Physiogeographical description of the lake and its vicinity. Location, geology, geomorphology, and climate. In: Kornijów R, Buczyński P, eds. Lake Skomielno (Łęczna-Włodawa Lakeland, Eastern Poland). Environment monography, pp. 10–20. [Google Scholar]
  • Takashi A, Munira S, Jagath M, Takeshi F. 2004. The effect of epiphytic algae on the growth and production of Potamogeton perfoliatus L. in two light conditions. Environ Exper Bot 52: 225–238. [CrossRef] [Google Scholar]
  • Tall L, Cloutier L, Cattaneo A. 2006. Grazer‐diatom size relationships in an epiphytic community. Limnol Oceanogr 51: 1211–1216. [CrossRef] [Google Scholar]
  • Tarkowska-Kukuryk M. 2013. Periphytic algae as food source for grazing chironomids in a shallow phytoplankton dominated lake. Limnologica 43: 254–264. [CrossRef] [Google Scholar]
  • ter Braak CJF, Šmilauer P. 2002. CANOCO reference manual and user's guide to Canoco for Windows: software for Canonical community ordination (version 4.5). Ithaca, NY, USA: Microcomputer Power. [Google Scholar]
  • Toporowska M, Pawlik-Skowrońska B, Wojtal AZ. 2008. Epiphytic algae on Stratiotes aloides L., Potamogeton lucens L., Ceratophyllum demersum L. and Chara spp. in a macrophyte-dominated lake. Oceanol Hydrobiol Stud 37: 51–63. [CrossRef] [Google Scholar]
  • Vadeboncoeur Y, Kalff J, Christoffersen K, Jeppesen E. 2006. Substratum as a driver of variation in periphyton chlorophyll and productivity in lakes. J North Am Benthological Soc 25: 379–392. [CrossRef] [Google Scholar]
  • Vadeboncoeur Y, Steinman AD. 2002. Periphyton function in lake ecosystems. Sc World J 2: 1449–1468. [CrossRef] [Google Scholar]
  • Van den Hoek C, Mann DG, Jahns HM. 1995. Algae. An introduction to phycology. Cambridge: Cambridge Univ. Press, 623 p. [Google Scholar]
  • Weis JS, Weis P. 2003. Is the invasion of the common reed, Phragmites australis, into tidal marshes of the eastern US an ecological disaster ? Mar Pollut Bull 46: 816–820. [CrossRef] [PubMed] [Google Scholar]
  • Zhang X, Mei X. 2013. Periphyton response to nitrogen and phosphorus enrichment in a eutrophic shallow aquatic ecosystem. CJOL 31: 59–64. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.