Open Access
Issue
Knowl. Manag. Aquat. Ecosyst.
Number 419, 2018
Article Number 19
Number of page(s) 11
DOI https://doi.org/10.1051/kmae/2018010
Published online 27 March 2018
  • Biesiadka E, Kowalik W. 1980. Water mites (Hydracarina) of the western Bieszczady mountains. 1. Stagnant waters. Acta hydrobiol 22: 279–289. [Google Scholar]
  • Bonneau JL, Scarnecchia DL. 2015. Response of benthic macroinvertebrates to carp (Cyprinus carpio) biomanipulation in three tributaries of a eutrophic, Great Plains reservoir, USA. Trans Kans Acad Sci 118: 13–26. [CrossRef] [Google Scholar]
  • Brabender M, Weitere M, Anlanger C, Brauns M. 2016. Secondary production and richness of native and non-native macroinvertebrates are driven by human-altered shoreline morphology in a large river. Hydrobiologia 776: 51–65. [CrossRef] [Google Scholar]
  • Choe LJ, Jung SW, Kim DG, Baek MJ, Kang HJ, Lee CY, Bae YJ. 2014. Temporal changes in benthic macroinvertebrates and their interactions with fish predators after restoration in the Cheonggyecheon, a downtown stream in Seoul, Korea. Entomol Res 44: 338–348. [CrossRef] [Google Scholar]
  • Domagała J, Krepski T, Czerniawski R, Pilecka-Rapacz M. 2015. Prey availability and selective feeding of sea trout (Salmo trutta L., 1758) fry stocked in small forest streams. J Appl Ichthyol 31: 375–380. [CrossRef] [Google Scholar]
  • Graça MAS, Ferreira WR, Firmiano K, França J, Callisto M. 2015. Macroinvertebrate identity, not diversity, differed across patches differing in substrate particle size and leaf litter packs in low order, tropical Atlantic forest streams. Limnetica 34: 29–40. [Google Scholar]
  • Kakouei K, Kiesel J, Kail J, Pusch M, Jähnig SC. 2017. Quantitative hydrological preferences of benthic stream invertebrates in Germany. Ecol Indic 79: 163–172. [CrossRef] [Google Scholar]
  • Leitner P, Hauer C, Graf W. 2017. Habitat use and tolerance levels of macroinvertebrates concerning hydraulic stress in hydropeaking rivers − a case study at the Ziller River in Austria. Sci Total Environ 575: 112–118. [CrossRef] [PubMed] [Google Scholar]
  • Leslie AW, Lamp WO. 2017. Taxonomic and functional group composition of macroinvertebrate assemblages in agricultural drainage ditches. Hydrobiologia 787: 99–110. [CrossRef] [Google Scholar]
  • Leslie AW, Smith RF, Ruppert DE, Bejleri K, McGrath JM, Needelman BA, Lamp WO. 2012. Environmental factors structuring benthic macroinvertebrate communities of agricultural ditches in Maryland. Environ Entomol 41: 802–812. [CrossRef] [Google Scholar]
  • Malaj E, Grote M, Schäfer RB, Brack W, Von Der Ohe PC. 2012. Physiological sensitivity of freshwater macroinvertebrates to heavy metals. Environ Toxicol Chem 31: 1754–1764. [CrossRef] [PubMed] [Google Scholar]
  • Nicola GG, Almodóvar A, Elvira B. 2010. Effects of environmental factors and predation on benthic communities in headwater streams. Aquat Sci 72: 419–429. [CrossRef] [Google Scholar]
  • Nyström P, McIntosh AR, Winterbourn MJ. 2003. Top-down and bottom-up processes in grassland and forested streams. Oecologia 136: 596–608. [CrossRef] [PubMed] [Google Scholar]
  • Rico A, Van den Brink PJ, Leitner P, Graf W, Focks A. 2016. Relative influence of chemical and non-chemical stressors on invertebrate communities: a case study in the Danube River. Sci Total Environ 571: 1370–1382. [CrossRef] [PubMed] [Google Scholar]
  • Simon TN, Travis J. 2011. The contribution of man-made ditches to the regional stream biodiversity of the new river watershed in the Florida panhandle. Hydrobiologia 661: 163–177. [CrossRef] [Google Scholar]
  • Souto RMG, Facure KG, Pavanin LA, Jacobucci GB. 2011. Influence of environmental factors on benthic macroinvertebrate communities of urban streams in Vereda habitats, Central Brazil. Acta Limnologica Brasiliensia 23: 293–306. [CrossRef] [Google Scholar]
  • Traversetti L, Ceschin S, Manfrin A, Scalici M. 2015. Co-occurrence between macrophytes and macroinvertebrates: towards a new approach for the running waters quality evaluation? J Limnol 74: 133–142. [Google Scholar]
  • Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE. 1980. The River Continuum concept. Can J Fish Aquat Sci 37: 130–137. [Google Scholar]
  • Verdonschot RCM, Keizer-Vlek HE, Verdonschot PFM. 2011. Biodiversity value of agricultural drainage ditches: a comparative analysis of the aquatic invertebrate fauna of ditches and small lakes. Aquatic Conserv: Mar Freshw Ecosyst 21: 715–727. [CrossRef] [Google Scholar]
  • Verdonschot RCM, Verdonschot PFM. 2014. Shading effects of free-floating plants on drainage-ditch invertebrates. Limnology 15: 225–235. [CrossRef] [Google Scholar]
  • Whatley MH, Van Loon EE, Van Dam H, Vonk JA, Van Der Geest HG, Aadmiraal W. 2014. Macrophyte loss drives decadal change in benthic invertebrates in peatland drainage ditches. Freshwater Biol 59: 114–126. [CrossRef] [Google Scholar]
  • Williams LR, Taylor CM. 2003. Influence of fish predation on assemblage structure of macroinvertebrates in an intermittent stream. T Am Fish Soc 132: 120–130. [CrossRef] [Google Scholar]
  • Williams P, Whitfield M, Biggs J, Bray S, Fox G, Nicolet P, Sear D. 2003. Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biol Conserv 115: 329–341. [Google Scholar]
  • Wohl E. 2017. The significance of small streams. Front Earth Sci 11: 447–456. [CrossRef] [Google Scholar]
  • Wynne CA, Linnane SM. 2009. An investigation of macrophyte and macroinvertebrate communities in lowland sites on the rivers of Milltown (Muckno Mill) lake catchment, Co. Monaghan, Ireland. Verh Internat Verein Limnol 30: 1133–1136. [Google Scholar]
  • Zhang Y, Zhang J, Wang L, Lu D, Cai D, Wang B. 2014. Influences of dispersal and local environmental factors on stream macroinvertebrate communities in Qinjiang River, Guangxi, China. Aquat Biol 20: 185–194. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.