Open Access
Issue
Knowl. Manag. Aquat. Ecosyst.
Number 418, 2017
Article Number 42
Number of page(s) 8
DOI https://doi.org/10.1051/kmae/2017037
Published online 15 September 2017
  • Águas M, Banha F, Marques M, Anastácio PM. 2014. Can recently-hatched crayfish cling to moving ducks and be transported during flight? Limnologica 48: 65–70. [CrossRef] [EDP Sciences] [Google Scholar]
  • Aguilar R, Ogburn MB, Driskell AC, Weigt LA, Mary C, Groves MC, Hines AH. 2016. Gutsy genetics: identification of digested piscine prey items in the stomach contents of sympatric native and introduced warmwater catfishes via DNA barcoding. Environ Biol Fishes 100: 325–336. [CrossRef] [Google Scholar]
  • Aldridge DC, Ho S, Froufe E. 2014. The Ponto-Caspian quagga mussel, Dreissena rostriformis bugensis (Andrusov, 1897), invades Great Britain. Aquat Invas 9: 529–535. [CrossRef] [Google Scholar]
  • Andraso G, Cowles J, Colt R, Patel J, Campbell M. 2011. Ontogenetic changes in pharyngeal morphology correlate with a diet shift from arthropods to dreissenid mussels in round gobies (Neogobius melanostomus). J Great Lakes Res 37: 738–743. [CrossRef] [Google Scholar]
  • Anastácio PM, Ferreira MP, Banha F, Capinha C, Rabaça JE. 2014. Waterbird-mediated passive dispersal is a viable process for crayfish (Procambarus clarkii). Aquat Ecol 48: 1–10. [CrossRef] [Google Scholar]
  • Banha F, Marques M, Anastácio PM. 2014. Dispersal of two freshwater invasive macroinvertebrates, Procambarus clarkii and Physella acuta, by off-road vehicles. Aquat Conserv Mar Freshw Ecosyst 24: 582–591. [CrossRef] [Google Scholar]
  • Banha F, Gimeno I, Lanao M, Touya V, Durán C, Peribáñez M, Anastácio P. 2016. The role of waterfowl and fishing gear on zebra mussel larvae dispersal. Biol Invasions 18: 115–125. [CrossRef] [Google Scholar]
  • Belz CE, Darrigran G, Mäder Netto OS, Boeger WA, Ribeiro Junior PJ. 2012. Analysis of four dispersion vectors in inland waters: the case of the invading bivalves in South America. J Shellfish Res 31: 777–784. [CrossRef] [Google Scholar]
  • Benson AJ. 2014. Chronological history of zebra and quagga mussels (Dreissinidae) in North America, 1988–2010. In: Nalepa TF, Schloesser DW, eds. Quagga and Zebra mussels: Biology, Impacts and Control, 2nd edn. Florida: Taylor and Francis Group, pp. 9–31. [Google Scholar]
  • Beyer J, Moy P, De Stasio B. 2011. Acute upper thermal limits of three aquatic invasive invertebrates: hot water treatment to prevent upstream transport of invasive species. Environ Manag 47: 67–76. [CrossRef] [EDP Sciences] [Google Scholar]
  • Bilton DT, Freeland JR, Okamura B. 2001. Dispersal in freshwater invertebrates. Annu Rev Ecol Syst 32: 159–181. [CrossRef] [Google Scholar]
  • Bouchard RW, Ferrington LC, Karius ML. 2004. Guide to aquatic invertebrates of the Upper Midwest. Identification manual for students, citizen monitors, and aquatic resource professionals. University of Minnesota. [Google Scholar]
  • Brown RJ. 2007. Freshwater mollusks survive fish gut passage. Artic 60: 124–128. [Google Scholar]
  • Bruce RL, Moffitt CM, Dennis B. 2009. Survival and passage of ingested New Zealand mudsnails through the intestinal tract of rainbow trout. North Am J Aquac 71: 287–301. [CrossRef] [Google Scholar]
  • Byrne RA, McMahon RF, Dietz TH. 1988. Temperature and relative humidity effects on aerial exposure tolerance in the freshwater bivalve Corbicula fluminea. Biol Bull 175: 253–260. [CrossRef] [Google Scholar]
  • Caffrey J, Dick J, Lucy F, Davis E, Niven A, Coughlan N. 2016. First record of the Asian clam Corbicula fluminea (Müller, 1774) (Bivalvia, Cyrenidae) in Northern Ireland. BioInvasions Rec 5: 239–244. [CrossRef] [Google Scholar]
  • Coughlan NE, Kelly TC, Davenport J, Jansen MAK. 2015a. Humid microclimates within the plumage of mallard ducks (Anas platyrhynchos) can potentially facilitate long distance dispersal of propagules. Acta Oecol 65–66: 17–23. [CrossRef] [Google Scholar]
  • Coughlan NE, Kelly TC, Jansen MAK. 2015b. Mallard duck (Anas platyrhynchos)-mediated dispersal of Lemnaceae: a contributing factor in the spread of invasive Lemna minuta? Plant Biol 17 (Suppl. 1): 108–114. [CrossRef] [Google Scholar]
  • Coughlan NE, Kelly TC, Davenport J, Jansen MAK. 2017a. Up, up and away: bird-mediated ectozoochorous dispersal between aquatic environments. Freshw Biol 62: 631–648. [CrossRef] [Google Scholar]
  • Coughlan NE, Kelly TC, Jansen MAK. 2017b. “Step by step”: high frequency short-distance epizoochorous dispersal of aquatic macrophytes. Biol Invasions 19: 625–634. [CrossRef] [Google Scholar]
  • De M, Ghaffar MA, Bakar Y, Das SK. 2016. Effect of temperature and diet on growth and gastric emptying time of the hybrid, Epinephelus fuscoguttatus ♀ × E. lanceolatus ♂. Aquac Reports 4: 118–124. [CrossRef] [Google Scholar]
  • Douda K, Velíšek J, Kolářová J, Rylková K, Slavík O, Horký P, Langrová I. 2017. Direct impact of invasive bivalve (Sinanodonta woodiana) parasitism on freshwater fish physiology: evidence and implications. Biol Invasions 19: 989–999. [CrossRef] [Google Scholar]
  • Ďuriš Z, Horká I, Petrusek A. 2007. Invasive zebra mussel colonisation of invasive crayfish: a case study. Hydrobiologia 590: 43–46. [CrossRef] [Google Scholar]
  • Essl F, Bacher S, Blackburn TM, Booy O, Brundu G, Brunel S, et al. 2015. Crossing frontiers in tackling pathways of biological invasions. BioScience 65: 769–782. [CrossRef] [Google Scholar]
  • Fincke OM, Tylczak LA. 2011. Effects of zebra mussel attachment on the foraging behaviour of a larval dragonfly, Macromia illinoiensis. Ecol Entomol 36: 760–767. [CrossRef] [Google Scholar]
  • Gatlin MR, Shoup DE, Long JM. 2013. Invasive zebra mussels (Driessena polymorpha) and Asian clams (Corbicula fluminea) survive gut passage of migratory fish species: implications for dispersal. Biol Invasions 15: 1195–1200. [CrossRef] [Google Scholar]
  • Green AJ. 2016. The importance of waterbirds as an overlooked pathway of invasion for alien species. Divers Distrib 22: 239–247. [CrossRef] [EDP Sciences] [Google Scholar]
  • Green AJ, Figuerola J. 2005. Recent advances in the study of long distance dispersal of aquatic invertebrates via birds. Divers Distrib 11: 149–156. [CrossRef] [Google Scholar]
  • Gurney KEB, Clark RG, Slattery SM, Ross LCM. 2017. Connecting the trophic dots: responses of an aquatic bird species to variable abundance of macroinvertebrates in northern boreal wetlands. Hydrobiologia 785: 1–17. [CrossRef] [Google Scholar]
  • Hamilton DJ, Davison Ankney C. 1994. Consumption of zebra mussels Dreissena polymorpha by diving ducks in Lakes Erie and St. Clair. Wildfowl 45: 159–166. [Google Scholar]
  • Higgins SN, Vander Zanden MJ. 2010. What a difference a species makes: a meta-analysis of dreissenid mussel impacts on freshwater ecosystems. Ecol Monogr 80: 179–196. [CrossRef] [Google Scholar]
  • Hughes ME, Fincke OM. 2012. Reciprocal effects between burying behavior of a larval dragonfly (Odonata: Macromia illinoiensis) and zebra mussel colonization. J Insect Behav 25: 554–568. [CrossRef] [Google Scholar]
  • Hulme PE, Bacher S, Kenis M, Klotz S, Kühn I, Minchin D, et al. 2008. Grasping at the routes of biological invasions: a framework for integrating pathways into policy. J Appl Ecol 45: 403–414. [CrossRef] [Google Scholar]
  • Hulme PE, Bacher S, Kenis M, Kühn I, Pergl J, Pyšek P, Roques A, Vilà M. 2016. Blurring alien introduction pathways risks losing the focus on invasive species policy. Conserv Lett, doi: 10.1111/conl.12262. [PubMed] [Google Scholar]
  • Incagnone G, Marrone F, Barone R, Robba L, Nasselli-Flores L. 2015. How do freshwater organisms cross the “dry ocean”? A review on passive dispersal and colonization processes with a special focus on temporary ponds. Hydrobiologia 750: 103–123. [Google Scholar]
  • Johnson LE, Carlton JT. 1996. Post-establishment spread in large-scale invasions: Dispersal mechanisms of the zebra mussel Dreissena polymorpha. Ecology 77: 1686–1690. [CrossRef] [Google Scholar]
  • Karatayev AY, Burlakova LE, Padilla DK. 2015. Zebra versus quagga mussels: a review of their spread, population dynamics, and ecosystem impacts. Hydrobiologia 746: 97–112. [CrossRef] [Google Scholar]
  • Kappes H, Haase P. 2012. Slow, but steady: dispersal of freshwater molluscs. Aquat Sci 74: 1–14. [CrossRef] [Google Scholar]
  • Kohl KD, Ciminari ME, Chediack JG, Leafloor JO, Karasov WH, McWilliams SR, Caviedes-Vidal E. 2017. Modulation of digestive enzyme activities in the avian digestive tract in relation to diet composition and quality. J Com Physiol B 197: 339–351. [CrossRef] [Google Scholar]
  • Lucy FE, Karatayev AY, Burlakova LE. 2012. Predictions for the spread, population density, and impacts of Corbicula flumineain Ireland. Aquat Invasions 7: 465–474. [CrossRef] [Google Scholar]
  • MacAvoy SE, Macko SA, McIninch SP, Garman GC. 2000. Marine nutrient contributions to freshwater apex predators. Oecologia 122: 568–573. [CrossRef] [PubMed] [Google Scholar]
  • Mack TN, Andraso G. 2015. Ostracods and other prey survive passage through the gut of round goby (Neogobius melanostomus). J Great Lakes Res 41: 303–306. [CrossRef] [Google Scholar]
  • Mackie GL. 1979. Dispersal mechanisms in Sphaeriidae (Mollusca: Bivalvia). Bull Am Malacol Union 45: 17–21. [Google Scholar]
  • Mackie GL. 1991. Biology of the exotic zebra mussel, Dreissena polymorpha, in relation to native bivalves and its potential impact in Lake St. Clair. Hydrobiologia 219: 251–268. [CrossRef] [Google Scholar]
  • Marescaux J, Bij de Vaate A, Van Doninck K. 2012. First records of Dreissena rostriformis bugensis (Andrusov, 1897) in the Meuse River. BioInvasions Records 1: 109–114. [CrossRef] [EDP Sciences] [Google Scholar]
  • McMahon RF. 1979 Response to temperature and hypoxia in the oxygen consumption of the introduced asiatic freshwater clam Corbicula fluminea (Müller). Comp Biochem Physiol Part A: Physiol 63: 383–388. [CrossRef] [Google Scholar]
  • McMahon R. 1982. The occurrence and spread of the introduced Asiatic freshwater clam Corbicula fluminea (Müller), in North America: 1924–1982. Nautilus 96: 134–141. [Google Scholar]
  • McMahon RF. 2002. Evolutionary and physiological adaptations of aquatic invasive animals: r selection versus resistance. Can J Fish Aquatic Sci 59: 1235–1244. [CrossRef] [Google Scholar]
  • McMahon RF, Ussery TA. 1995. Thermal tolerance of zebra mussels (Dreissena polymorpha) relative to rate of temperature increase and acclimation temperature. Technical Report EL-95-10. Vicksburg, MS: U.S. Army Engineer Waterways Experiment Station. [Google Scholar]
  • Mizanur RM, Yun H, Moniruzzaman M, Ferreira F, Kim KW, Bai SC. 2014. Effects of feeding rate and water temperature on growth and body composition of juvenile Korean Rockfish, Sebastes schlegeli (Hilgendorf 1880). Asian-Australas J Anim Sci 27: 690–699. [CrossRef] [PubMed] [Google Scholar]
  • Perello MM, Simon TP, Thompson HA, Kane DD. 2015. Feeding ecology of the invasive round goby, Neogobius melanostomus (Pallas, 1814), based on laboratory size preference and field diet in different habitats in the western basin of Lake Erie. Aquat Invasions 10: 463–474. [CrossRef] [Google Scholar]
  • Piersma T, Koolhaas A, Dekinga A. 1993. Interactions between stomach structure and diet choice in shorebirds. Auk 110: 552–564. [CrossRef] [Google Scholar]
  • Pimentel D, Zuniga R, Morrison D. 2005. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol Econ 52: 273–288. [CrossRef] [MathSciNet] [Google Scholar]
  • Rees WJ. 1965. The aerial dispersal of mollusca. Proc Malacol Soc Lond 36: 269. [Google Scholar]
  • Reynolds C, Cumming GS. 2015. The role of waterbirds in the dispersal of freshwater cladocera and bryozoa in southern Africa. Afr Zool 50: 307–311. [CrossRef] [Google Scholar]
  • Reynolds C, Miranda NAF, Cumming GS. 2015. The role of waterbirds in the dispersal of aquatic alien and invasive species. Divers Distrib 21: 744–754. [CrossRef] [Google Scholar]
  • Ricciardi A, Serrouya R, Whoriskey FG. 1995. Aerial exposure tolerance of zebra and quagga mussels (Bivalvia: Dreissenidae): implications for overland dispersal. Can J Fish Aquat Sci 52: 470–477. [CrossRef] [Google Scholar]
  • Robinson JV, Wellborn GA. 1988. Ecological resistance to the invasion of a freshwater clam, Corbicula fluminea: fish predation effects. Oecologia 77: 445–452. [CrossRef] [PubMed] [Google Scholar]
  • Soomers H, Karssenberg D, Soons MB, Verweij PA, Verhoeven JTA, Wassen MJ. 2013. Wind and water dispersal of wetland plants across fragmented landscapes. Ecosystems 16: 434–451. [CrossRef] [Google Scholar]
  • Solarz W, Najberek K, Pociecha A, Wilk-Woźniak E. 2017. Birds and alien species dispersal: on the need to focus management efforts on primary introduction pathways − comment on Reynolds et al. and Green. Divers Distrib 23: 113–117. [CrossRef] [Google Scholar]
  • Sousa R, Gutierrez JL, Aldridge DC. 2009. Non-indigenous invasive bivalves as ecosystem engineers. Biol Invasions 11: 2367–2385. [CrossRef] [Google Scholar]
  • Sousa R, Novais A, Costa R, Strayer DL. 2014. Invasive bivalves in fresh waters: impacts from individuals to ecosystems and possible control strategies. Hydrobiologia 735: 233–251. [CrossRef] [Google Scholar]
  • Spidle AP, Mills EL, May B. 1995. Limits to tolerance of temperature and salinity in the quagga mussel (Dreissena bugensis) and the zebra mussel (Dreissena polymorpha). Can J Fish Aquat Sci 52: 2108–2119. [CrossRef] [Google Scholar]
  • Strayer DL, Caraco NF, Cole JJ, Findlay S, Pace ML. 1999. Transformation of freshwater ecosystems by bivalves: a case study of zebra mussels in the Hudson River. Bioscience 49: 19–27. [CrossRef] [Google Scholar]
  • Swanson GA. 1984. Dissemination of amphipods by waterfowl. J Wildlife Manag 48: 988–991. [CrossRef] [Google Scholar]
  • Thompson HA, Simon TP. 2014. Diet shift response in round goby, Neogobius melanostomus, based on size, sex, depth, and habitat in the western basin of Lake Erie. J Appl Ichthyol 30: 955–961. [CrossRef] [EDP Sciences] [Google Scholar]
  • Thompson CM, Sparks RE. 1977. Improbability of dispersal of adult Asiatic clams, Corbiulca manilensis, via the intestinal tract of migratory waterfowl. Am Midl Nat 98: 219–223. [CrossRef] [Google Scholar]
  • Tøttrup AP, Chan BKK, Koskinen H, Høeg JH. 2010. ‘Flying barnacles’: implications for the spread of non-indigenous species. Biofouling 26: 577–582. [CrossRef] [PubMed] [Google Scholar]
  • Tripp SJ, Hill MJ, Calkins HA, Brooks RC, Herzog DP, Ostendorf DE, Hrabik RA, Garvey JE. 2011. Blue catfish movement in the upper Mississippi River. In: Michaletz PH, Travnichek VH, eds. Conservation, ecology, and management of catfish: the second international symposium. American Fisheries Society, Symposium 77, Bethesda, Maryland, pp. 511–519. [Google Scholar]
  • Tucker JK, Cronin FA, Soergel DW, Theiling CH. 1996. Predation on Zebra Mussels (Dreissena polymorpha) by Common Carp (Cyprinus carpio). J Freshw Ecol 11: 363–372. [CrossRef] [Google Scholar]
  • van Gils JA, Piersma T, Anne Dekinga A, Dietz MW. 2003. Cost–benefit analysis of mollusc-eating in a shorebird II. Optimizing gizzard size in the face of seasonal demands. J Exp Biol 206: 3369–3380. [CrossRef] [PubMed] [Google Scholar]
  • van Leeuwen CHA, van der Velde G, van Lith B, Klaassen M. 2012. Experimental quantification of long distance dispersal potential of aquatic snails in the gut of migratory birds. PLoS ONE 7: e32292. [CrossRef] [PubMed] [Google Scholar]
  • Voelz NJ, McArthur JV, Rader RB. 1998. Upstream mobility of the Asiatic clam Corbicula fluminea: identifying potential dispersal agents. J Freshw Ecol 13: 39–45. [CrossRef] [Google Scholar]
  • Waterkeyn A, Pineau O, Grillas P, Brendonck L. 2010. Invertebrate dispersal by aquatic mammals: a case study with nutria Myocastor coypus (Rodentia, Mammalia) in Southern France. Hydrobiologia 654: 267–271. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.