Issue
Knowl. Manag. Aquat. Ecosyst.
Number 418, 2017
Topical Issue on Fish Ecology
Article Number 41
Number of page(s) 14
DOI https://doi.org/10.1051/kmae/2017032
Published online 06 September 2017
  • AFNOR. 2015. Qualité de l'eau. La Plaine Saint Denis: AFNOR Editions. [Google Scholar]
  • Andersen T, Carstensen J, Hernández-García E, Duarte CM. 2009. Ecological thresholds and regime shifts: approaches to identification. Trends Ecol Evol 24: 49–57. [CrossRef] [PubMed] [Google Scholar]
  • Argillier C, Pronier O, Irz P. 2002. Approche typologique des peuplements piscicoles lacustres Français. I. Les communautés des plans d'eau d'altitude supérieure à 1500 m. Bull Fr Pêche Piscic 365/366: 373–387. [CrossRef] [EDP Sciences] [Google Scholar]
  • Argillier C, Causse S, Gevrey M, et al. 2013. Development of a fish-based index to assess the eutrophication status of European lakes. Hydrobiologia 704: 193–211. [CrossRef] [Google Scholar]
  • Arranz I, Mehner T, Benejam L, et al. 2016. Density-dependent effects as key drivers of intraspecific size structure of six abundant fish species in lakes across Europe. Can J Fish Aquat Sci 73: 519–534. [CrossRef] [Google Scholar]
  • Baker ME, King RS. 2010. A new method for detecting and interpreting biodiversity and ecological community thresholds. Methods Ecol Evol 1: 25–37. [CrossRef] [Google Scholar]
  • Balon EK. 1975. Reproductive guilds of fishes: a proposal and definition. J Fish Res Board Can 32: 821–864. [CrossRef] [Google Scholar]
  • Birk S, Bonne W, Borja A, et al. 2012. Three hundred ways to assess Europe's surface waters: an almost complete overview of biological methods to implement the Water Framework Directive. Ecol Ind 18: 31–41. [Google Scholar]
  • Black RW, Moran PW, Frankforter JD. 2011. Response of algal metrics to nutrients and physical factors and identification of nutrient thresholds in agricultural streams. Environ Monit Assess 175: 397–417. [CrossRef] [PubMed] [Google Scholar]
  • Blomqvist P, Jansson M, Drakare S, Bergstrom AK, Brydsten L. 2001. Effects of additions of DOC on pelagic biota in a clearwater system: results from a whole lake experiment in northern Sweden. Microb Ecol 42: 383–394. [CrossRef] [PubMed] [Google Scholar]
  • Breiman L. 2001. Random forests. Mach Learn 45: 5–32. [Google Scholar]
  • Brucet S, Pedron S, Mehner T, et al. 2013. Fish diversity in European lakes: geographical factors dominate over anthropogenic pressures. Freshw Biol 58: 1779–1793. [CrossRef] [Google Scholar]
  • Bruslé J, Quignard J. 2001. Biologie des poissons d'eau douce européens. Paris: Tec&Doc. [Google Scholar]
  • Carlson RE. 1977. Trophic state index for lakes. Limnol Oceanogr 22: 361–369. [Google Scholar]
  • CEN. 2005. Water quality – sampling of fish with multi-mesh gillnets. 14757:E. [Google Scholar]
  • Chambers PA, Culp JM, Roberts ES, Bowerman M. 2012. Development of environmental thresholds for streams in agricultural watersheds. J Environ Qual 41: 1–6. [CrossRef] [PubMed] [Google Scholar]
  • Crisp DT. 1996. Environmental requirements of common riverine European salmonid fish species in fresh water with particular reference to physical and chemical aspects. Hydrobiologia 323: 201–221. [CrossRef] [Google Scholar]
  • Daily JP, Hitt NP, Smith DR, Snyder CD. 2012. Experimental and environmental factors affect spurious detection of ecological thresholds. Ecology 93: 17–23. [CrossRef] [PubMed] [Google Scholar]
  • Daufresne M, Boet P. 2007. Climate change impacts on structure and diversity of fish communities in rivers. Global Change Biol 13: 2467–2478. [Google Scholar]
  • Daufresne M, Roger MC, Capra H, Lamouroux N. 2004. Long-term changes within the invertebrate and fish communities of the Upper Rhone River: effects of climatic factors. Global Change Biol 10: 124–140. [Google Scholar]
  • Daufresne M, Lengfellner K, Sommer U. 2009. Global warming benefits the small in aquatic ecosystems. Proc Natl Acad Sci USA 106: 12788–12793. [CrossRef] [PubMed] [Google Scholar]
  • Daufresne M, Veslot J, Capra H, et al. 2015. Fish community dynamics (1985–2010) in multiple reaches of a large river subjected to flow restoration and other environmental changes. Freshw Biol 60: 1176–1191. [CrossRef] [Google Scholar]
  • De'ath G, Fabricius KE. 2000. Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 81: 3178–3192. [CrossRef] [Google Scholar]
  • Downing JA, Plante C. 1993. Production of fish populations in lakes. Can J Fish Aquat Sci 50: 110–120. [CrossRef] [Google Scholar]
  • EEB. 2001. Handbook on EU Water Policy under the Water Framework Directive. Brussels: European Environmental Bureau, p. 56. [Google Scholar]
  • Ellis N, Smith SJ, Pitcher CR. 2012. Gradient forests: calculating importance gradients on physical predictors. Ecology 93: 156–168. [CrossRef] [PubMed] [Google Scholar]
  • European Commission. 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a Framework for Community Action in the Field of Water Policy. The European Parlament and Council, p. 72. [Google Scholar]
  • Evans-White MA, Dodds WK, Huggins DG, Baker DS. 2009. Thresholds in macroinvertebrate biodiversity and stoichiometry across water-quality gradients in Central Plains (USA) streams. J N Am Benthol Soc 28: 855–868. [CrossRef] [Google Scholar]
  • Finstad AG, Helland IP, Ugedal O, Hesthagen T, Hessen DO. 2014. Unimodal response of fish yield to dissolved organic carbon. Ecol Lett 17: 36–43. [CrossRef] [PubMed] [Google Scholar]
  • FishBase. 2016. World wide web electronic publication. In: Froese R, Pauly D, eds. www.fishbase.org. [Google Scholar]
  • Free G, Little R, Tierney D, Donnelly K, Caroni R. 2006. A reference based typology and ecological assessment system for Irish lakes. Prelimnary investigations. Wexford, Ireland: Environmental Protection Agency, p. 266. [Google Scholar]
  • Fukami T, Wardle DA. 2005. Long-term ecological dynamics: reciprocal insights from natural and anthropogenic gradients. Proc R Soc B: Biol Sci 272: 2105–2115. [CrossRef] [Google Scholar]
  • Graham JL, Jones JR, Jones SB, Downing JA, Clevenger TE. 2004. Environmental factors influencing microcystin distribution and concentration in the Midwestern United States. Water Res 38: 4395–4404. [CrossRef] [PubMed] [Google Scholar]
  • Grenouillet G, Hugueny B, Carrel GA, Olivier JM, Pont D. 2001. Large-scale synchrony and inter-annual variability in roach recruitment in the Rhone River: the relative role of climatic factors and density-dependent processes. Freshw Biol 46: 11–26. [CrossRef] [Google Scholar]
  • Groffman P, Baron J, Blett T, et al. 2006. Ecological thresholds: the key to successful environmental management or an important concept with no practical application? Ecosystems 9: 1–13. [CrossRef] [Google Scholar]
  • Holcik J, Banarescu P, Evans D. 1989. General introduction to fishes. In: Holcik J, ed. General introduction to fishes. Acipenseriformes. Wiesbaden: Aula-Verlag, pp. 18–147. [Google Scholar]
  • Irz P, Laurent A, Messad S, Pronier O, Argillier C. 2002. Influence of site characteristics on fish community patterns in French reservoirs. Ecol Freshw Fish 11: 123–136. [Google Scholar]
  • James A. 1979. The value of biological indicators in relation to other parameters of water quality. In: James A, Evison L, eds. Biological indicators of water quality. Chichester: Wiley, p. 15. [Google Scholar]
  • Keith P, Allardi J. 2001. Atlas des poissons d'eau douce de France, 387 p. [Google Scholar]
  • Keith P, Persat H, Feunteun E, Allardi J (coords). 2011. Les poissons d'eau douce de France. Mèze, Paris: Biotope, Muséum national d'histoire naturelle (collection Inventaires et biodiversité), 552 p. [Google Scholar]
  • King RS, Baker ME. 2010. Considerations for analyzing ecological community thresholds in response to anthropogenic environmental gradients. J N Am Benthol Soc 29: 998–1008. [CrossRef] [Google Scholar]
  • Koenings JP, Edmundson JA. 1991. Secchi disk and photometer estimates of light regimes in Alaskan lakes − effects of yellow color and turbidity. Limnol Oceanogr 36: 91–105. [CrossRef] [Google Scholar]
  • Lelek A. 1987. Threatened fishes of Europe. Wiesbaden: AULA-Verlag GmbH, 343 p. [Google Scholar]
  • Liu JG, Kattel G, Arp HPH, Yang H. 2015. Towards threshold-based management of freshwater ecosystems in the context of climate change. Ecol Model 318: 265–274. [CrossRef] [Google Scholar]
  • Mac Nally R, Albano C, Fleishman E. 2014. A scrutiny of the evidence for pressure-induced state shifts in estuarine and nearshore ecosystems. Aust Ecol 39: 898–906. [CrossRef] [Google Scholar]
  • Mann RHK. 1996. Environmental requirements of European non-salmonid fish in rivers. Hydrobiologia 323: 223–235. [CrossRef] [Google Scholar]
  • May RM. 1977. Thresholds and breakpoints in ecosystems with a multiplicity of stable states. Nature 269: 471–477. [CrossRef] [Google Scholar]
  • MEDDE. 2012. Guide technique: évaluation de l'état des eaux de surface continentales (cours d'eau, canaux, plans d'eau). La Défense: Ministère de l'Ecologie et du Développement Durable et de l'Energie, 84 p. [Google Scholar]
  • Megard RO, Settles JC, Boyer HA, Combs WS. 1980. Light, Secchi disks, and trophic states. Limnol Oceanogr 25: 373–377. [CrossRef] [Google Scholar]
  • Mehner T, Diekmann M, Bramick U, Lemcke R. 2005. Composition of fish communities in German lakes as related to lake morphology, trophic state, shore structure and human-use intensity. Freshw Biol 50: 70–85. [Google Scholar]
  • Nunn AD, Cowx IG, Harvey JP. 2002. Recruitment patterns of six species of cyprinid fishes in the lower River Trent, England. Ecol Freshw Fish 11: 74–84. [CrossRef] [Google Scholar]
  • O'Connor MI, Piehler MF, Leech DM, Anton A, Bruno JF. 2009. Warming and resource availability shift food web structure and metabolism. PLoS Biol 7: 1–5. [CrossRef] [Google Scholar]
  • OECD. 1982. Eutrophication of waters. Monitoring, assessment and control. Cooperative programme on monitoring of inland waters. Paris: Organisation for Economic Co-operation and Development (OECD), p. 154. [Google Scholar]
  • Ohlberger J, Edeline E, Vøllestad LA, Stenseth NC, Claessen D. 2011. Temperature-driven regime shifts in the dynamics of size-structured populations. Am Nat 177: 211–223. [CrossRef] [PubMed] [Google Scholar]
  • Parkinson EA, Lea EV, Nelitz MA, Knudson JM, Moore RD. 2016. Identifying temperature thresholds associated with fish community changes in British Columbia, Canada, to support identification of temperature sensitive streams. River Res Appl 32: 330–347. [CrossRef] [Google Scholar]
  • Penning WE, Dudley B, Mjelde M, et al. 2008. Using aquatic macrophyte community indices to define the ecological status of European lakes. Aquat Ecol 42: 253–264. [CrossRef] [EDP Sciences] [Google Scholar]
  • Persson L, Diehl S, Johansson L, Andersson G, Hamrin SF. 1991. Shifts in fish communities along the productivity gradient of temperate lakes – patterns and the importance of size-structured interactions. J Fish Biol 38: 281–293. [CrossRef] [Google Scholar]
  • Petchey OL, McPhearson PT, Casey TM, Morin PJ. 1999. Environmental warming alters food-web structure and ecosystem function. Nature 402: 69–72. [CrossRef] [Google Scholar]
  • Pitcher CR, Lawton P, Ellis N, et al. 2012. Exploring the role of environmental variables in shaping patterns of seabed biodiversity composition in regional-scale ecosystems. J Appl Ecol 49: 670–679. [CrossRef] [PubMed] [Google Scholar]
  • Pourriot R, Meybeck M. 1995. Limnologie générale. Paris: Masson. [Google Scholar]
  • R Core Team. 2013. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. [Google Scholar]
  • Rahel FJ, Nibbelink NP. 1999. Spatial patterns in relations among brown trout (Salmo trutta) distribution, summer air temperature, and stream size in Rocky Mountain streams. Can J Fish Aquat Sci 56: 43–51. [CrossRef] [Google Scholar]
  • Rall BC, Vucic-Pestic O, Ehnes RB, Emmerson M, Brose U. 2010. Temperature, predator-prey interaction strength and population stability. Global Change Biol 16: 2145–2157. [CrossRef] [Google Scholar]
  • Reuman DC, Holt RD, Yvon-Durocher G. 2014. A metabolic perspective on competition and body size reductions with warming. J Anim Ecol 83: 59–69. [CrossRef] [PubMed] [Google Scholar]
  • Reyjol Y, Hugueny B, Pont D, et al. 2007. Patterns in species richness and endemism of European freshwater fish. Global Ecol Biogeogr 16: 65–75. [CrossRef] [Google Scholar]
  • Richardson CJ, King RS, Qian SS, Vaithiyanathan P, Qualls RG, Stow CA. 2007. Estimating ecological thresholds for phosphorus in the Everglades. Environ Sci Technol 41: 8084–8091. [CrossRef] [PubMed] [Google Scholar]
  • Roubeix V, Danis P-A, Feret T, Baudoin J-M. 2016. Identification of ecological thresholds from variations in phytoplankton communities among lakes: contribution to the definition of environmental standards. Environ Monit Assess 188: 246. [CrossRef] [PubMed] [Google Scholar]
  • Scheffer M, Carpenter SR. 2003. Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol Evolut 18: 648–656. [CrossRef] [Google Scholar]
  • Smith AJ, Tran CP. 2010. A weight-of-evidence approach to define nutrient criteria protective of aquatic life in large rivers. J N Am Benthol Soc 29: 875–891. [CrossRef] [Google Scholar]
  • Solheim AL, Rekolainen S, Moe SJ, et al. 2008. Ecological threshold responses in European lakes and their applicability for the Water Framework Directive (WFD) implementation: synthesis of lakes results from the REBECCA project. Aquat Ecol 42: 317–334. [CrossRef] [Google Scholar]
  • Soranno PA, Cheruvelil KS, Stevenson RJ, et al. 2008. A framework for developing ecosystem-specific nutrient criteria: integrating biological thresholds with predictive modeling. Limnol Oceanogr 53: 773–787. [CrossRef] [Google Scholar]
  • Souchon Y, Tissot L. 2012. Synthesis of thermal tolerances of the common freshwater fish species in large Western Europe rivers. Knowl Manag Aquat Ecosyst 03: 405. [Google Scholar]
  • Strobl C, Boulesteix AL, Kneib T, Augustin T, Zeileis A. 2008. Conditional variable importance for random forests. BMC Bioinform 9: 307. [Google Scholar]
  • Sundermann A, Leps M, Leisner S, Haase P. 2015. Taxon-specific physico-chemical change points for stream benthic invertebrates. Ecol Ind 57: 314–323. [CrossRef] [Google Scholar]
  • Terbraak CJF, Verdonschot PFM. 1995. Canonical correspondence-analysis and related multivariate methods in aquatic ecology. Aquat Sci 57: 255–289. [CrossRef] [Google Scholar]
  • Tremblay S, Richard Y. 1993. Effects of acidity on fish communities in southwestern Quebec (Canada). Water Air Soil Pollut 66: 315–331. [Google Scholar]
  • Voigt W, Perner J, Davis AJ, et al. 2003. Trophic levels are differentially sensitive to climate. Ecology 84: 2444–2453. [CrossRef] [Google Scholar]
  • Vollenweider RA. 1975. Input-output models − with special reference to the phoshorus loading concept in limnology. Schweiz Z Hydrol 37: 53–84. [Google Scholar]
  • Vucic-Pestic O, Ehnes RB, Rall BC, Brose U. 2011. Warming up the system: higher predator feeding rates but lower energetic efficiencies. Global Change Biol 17: 1301–1310. [CrossRef] [Google Scholar]
  • Wagenhoff A, Clapcott JE, Lau KEM, Lewis GD, Young RG. 2017. Identifying congruence in stream assemblage thresholds in response to nutrient and sediment gradients for limit setting. Ecol Appl 27: 469–484. [CrossRef] [PubMed] [Google Scholar]
  • Wehrly KE, Wiley MJ, Seelbach PW. 2003. Classifying regional variation in thermal regime based on stream fish community patterns. Trans Am Fish Soc 132: 18–38. [CrossRef] [Google Scholar]
  • Williamson CE, Morris DP, Pace ML, Olson AG. 1999. Dissolved organic carbon and nutrients as regulators of lake ecosystems: resurrection of a more integrated paradigm. Limnol Oceanogr 44: 795–803. [CrossRef] [Google Scholar]
  • Wolter C. 2007. Temperature influence on the fish assemblage structure in a large lowland river, the lower Oder River, Germany. Ecol Freshw Fish 16: 493–503. [CrossRef] [Google Scholar]
  • Yvon-Durocher G, Jones JI, Trimmer M, Woodward G, Montoya JM. 2010. Warming alters the metabolic balance of ecosystems. Philos Trans R Soc B: Biol Sci 365: 2117–2126. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.