Issue
Knowl. Manag. Aquat. Ecosyst.
Number 418, 2017
Topical issue on Crayfish
Article Number 21
Number of page(s) 7
DOI https://doi.org/10.1051/kmae/2017014
Published online 12 May 2017
  • Alcorlo P, Geiger W, Otero M. 2008. Reproductive biology and life cycle of the invasive crayfish Procambarus clarkii (Crustacea: Decapoda) in diverse aquatic habitats of South-Western Spain: implications for population control. Fundam Appl Limnol 173: 197–212. [Google Scholar]
  • Anger K. 2003. Salinity as a key parameter in the larval biology of decapod crustaceans. Invertebr Reprod Dev 43: 29–45. [CrossRef] [Google Scholar]
  • Anson KJ, Rouse DB. 1994. Effects of salinity on hatching and post-hatch survival of the Australian red claw crayfish Cherax quadricarinatus. J World Aquacult Soc 25: 277–280. [CrossRef] [Google Scholar]
  • Bailey PC, James K. 2000. Riverine & wetland salinity impacts − assessment of R&D needs. [Google Scholar]
  • Ball M. 1998. Mangrove species richness in relation to salinity and waterlogging: a case study along the Adelaide River floodplain, Northern Australia. Glob Ecol Biogeogr Lett 7: 73–82. [CrossRef] [Google Scholar]
  • Bissattini AM, Traversetti L, Bellavia G, Scalici, M. 2015. Tolerance of increasing water salinity in the red swamp crayfish Procambarus clarkii (Girard, 1852). J Crustacean Biol 35: 682–685. [Google Scholar]
  • Berdnikov S, Selyutin V, Vasilchenko V, Caddy J. 1999. Trophodynamic model of the Black and Azov Sea pelagic ecosystem: consequences of the comb jelly, Mnemiopsis leydei, invasion. Fish Res 42:261–289. [CrossRef] [Google Scholar]
  • Buřič M, Kozák P, Vích P. 2008. Evaluation of different marking methods for spiny-cheek crayfish (Orconectes limosus). Knowl Manag Aquat Ecosyst 389: 02. [Google Scholar]
  • Casellato S, Masiero L. 2011. Does Procambarus clarkii (Girard, 1852) represent a threat for estuarine brackish ecosystems of Northeastern Adriatic Coast (Italy)? Life Sci J 5: 549–554. [Google Scholar]
  • Chucholl C. 2013. Feeding ecology and ecological impact of an alien ‘warm-water' omnivore in cold lakes. Limnologica 43: 219–229. [CrossRef] [Google Scholar]
  • Cohen AN, Carlton JT. 1998. Accelerating invasion rate in a highly invaded estuary. Science 279: 555–558. [CrossRef] [PubMed] [Google Scholar]
  • Costa-Dias S, Freitas V, Sousa R, Antunes C. 2010. Factors influencing epibenthic assemblages in the Minho estuary (NW Iberian Peninsula). Mar Pollut Bull 61: 240–246. [CrossRef] [PubMed] [Google Scholar]
  • Croghan P. 1976. Ionic and osmotic regulation of aquatic animals. In: Bligh J, Cloudsley-Thompson JL, MacDonald AG, eds. Environmental physiology of animals. Oxford: Blackwell, pp. 59–94. [Google Scholar]
  • Frey, DG. 1993. The penetration of cladocerans into saline waters. Hydrobiologia 267: 233–248. [CrossRef] [Google Scholar]
  • Gilles R, Pequeux A. 1983. Interactions of chemical and osmotic regulation with the environment. In: Vemberg FJ, Vemberg WB, eds. The biology of the Crustacea: environmental adaptations. New York: Academic Press, pp. 109–177. [Google Scholar]
  • Gonçalves A, Castro B, Pardal M, Gonçalves F. 2007. Salinity effects on survival and life history of two freshwater cladocerans (Daphnia magna and Daphnia longispina). Ann Limnol: Int J Lim 43: 13–20. [Google Scholar]
  • Grosholz E. 2002. Ecological and evolutionary consequences of coastal invasions. Trends Ecol Evol 17: 22–27. [CrossRef] [Google Scholar]
  • Guan R-Z, Wiles PR. 1999. Growth and reproduction of the introduced crayfish Pacifastacus leniusculus in a British lowland river. Fish Res 42: 245–259. [CrossRef] [Google Scholar]
  • Hart BT, Bailey P, Edwards R, et al. 1991. A review of the salt sensitivity of the Australian freshwater biota. Hydrobiologia 210: 105–144. [CrossRef] [Google Scholar]
  • Hendrix A, Loftus W. 2000. Distribution and relative abundance of the crayfishes Procambarus alleni (Faxon) and P. fallax (Hagen) in southern Florida. Wetlands 20: 194–199. [CrossRef] [Google Scholar]
  • Heugens EH, Hendriks AJ, Dekker T, Straalen NMv, Admiraal W. 2001. A review of the effects of multiple stressors on aquatic organisms and analysis of uncertainty factors for use in risk assessment. Crit Rev Toxicol 31: 247–284. [Google Scholar]
  • Holdich D, Harlioğlu M, Firkins I. 1997. Salinity adaptations of crayfish in British waters with particular reference to Austropotamobius pallipes, Astacus leptodactylus and Pacifastacus leniusculus. Estuar Coast Shelf Sci 44: 147–154. [CrossRef] [Google Scholar]
  • Holdich D, Reynolds J, Souty-Grosset C, Sibley P. 2009. A review of the ever increasing threat to European crayfish from non-indigenous crayfish species. Knowl Manag Aquat Ecosyst 394–395: 11. [CrossRef] [EDP Sciences] [Google Scholar]
  • Jaszczołt J, Szaniawska A. 2011. The spiny-cheek crayfish Orconectes limosus (Rafinesque, 1817) as an inhabitant of the Baltic Sea — experimental evidences for its invasion of brackish waters. Oceanol Hydrobiol Stud 40: 52–60. [Google Scholar]
  • Jazdzewski K, Konopacka A. 2002. Invasive Ponto-Caspian species in waters of the Vistula and Oder basins and the southern Baltic Sea. In: Leppäkoski E, Gollasch S, Olenin S, eds. Invasive aquatic species of Europe. Distribution, impacts and management. Berlin: Springer, pp. 384–398. [CrossRef] [Google Scholar]
  • Jones CM. 1989. The biology and aquaculture potential of Cherax quadricarinatus. Final report submitted by the Queensland Department of Primary Industries to the Reserve Bank of Australia Rural Credits Development Project No. QDPI/8860, pp. 1–116. [Google Scholar]
  • Keller N, Pfeiffer M, Roessink I, Schulz R, Schrimpf A. 2014. First evidence of crayfish plague agent in populations of the marbled crayfish (Procambarus fallax forma virginalis). Knowl Manag Aquat Ecosyst 414: 15. [CrossRef] [EDP Sciences] [Google Scholar]
  • Kornis M, Mercado-Silva N, Vander Zanden M. 2012. Twenty years of invasion: a review of round goby Neogobius melanostomus biology, spread and ecological implications. J Fish Biol 80: 235–285. [CrossRef] [PubMed] [Google Scholar]
  • Kotovska G, Khrystenko D, Patoka J, Kouba A. 2016. East European crayfish stocks at risk: arrival of non-indigenous crayfish species. Knowl Manag Aquat Ecosyst 417: 37. [CrossRef] [EDP Sciences] [Google Scholar]
  • Kouba A, Petrusek A, Kozák P. 2014. Continental-wide distribution of crayfish species in Europe: update and maps. Knowl Manag Aquat Ecosyst 414: 05. [CrossRef] [EDP Sciences] [Google Scholar]
  • Kouba A, Tíkal J, Císař P, et al. 2016. The significance of droughts for hyporheic dwellers: evidence from freshwater crayfish. Sci Rep 6: 26569. [CrossRef] [PubMed] [Google Scholar]
  • Leppäkoski E, Olenin S. 2000. Non-native species and rates of spread: lessons from the brackish Baltic Sea. Biol Invasions 2: 151–163. [CrossRef] [Google Scholar]
  • Lipták B, Mrugała A, Pekárik L, et al. 2016. Expansion of the marbled crayfish in Slovakia: beginning of an invasion in the Danube catchment? J Limnol 75: 305–312. [Google Scholar]
  • Lodge DM, Taylor CA, Holdich DM, Skurdal J. 2000. Nonindigenous crayfishes threaten North American freshwater biodiversity: lessons from Europe. Fisheries 25: 7–20. [CrossRef] [Google Scholar]
  • Martin P. 2015. Reproductive biology, parthenogenesis: mechanisms, evolution, and its relevance to the role of marbled crayfish as model organism and potential invader. In: Kawai T, Faulkes Z, Scholtz G, eds. Freshwater crayfish: a global overview. New York: CRC Press, pp. 63–82. [CrossRef] [Google Scholar]
  • Martin P, Dorn NJ, Kawai T, van der Heiden C, Scholtz G. 2010. The enigmatic Marmorkrebs (marbled crayfish) is the parthenogenetic form of Procambarus fallax (Hagen, 1870). Contrib Zool 79: 107–118. [Google Scholar]
  • Martin P, Thonagel S, Scholtz G. 2016. The parthenogenetic Marmorkrebs (Malacostraca: Decapoda: Cambaridae) is a triploid organism. J Zool Sys Evol Res 54: 13–21. [CrossRef] [Google Scholar]
  • Meineri E, Rodriguez-Perez H, Hilaire S, Mesleard F. 2014. Distribution and reproduction of Procambarus clarkii in relation to water management, salinity and habitat type in the Camargue. Aquat Conserv 24: 312–323. [CrossRef] [Google Scholar]
  • Moorhouse TP, Macdonald DW. 2015. Are invasives worse in freshwater than terrestrial ecosystems? Wiley Interdiscip Rev 2: 1–8. [CrossRef] [Google Scholar]
  • Mrugała A, Kozubíková-Balcarová E, Chucholl C, et al. 2014. Trade of ornamental crayfish in Europe as a possible introduction pathway for important crustacean diseases: crayfish plague and white spot syndrome. Biol Invasions 17: 1–14. [Google Scholar]
  • Newsom JE, Davis KB. 1994. Osmotic responses of haemolymph in red swamp crayfish (Procambarus clarkii) and white river crayfish (P. zonangulus) to changes in temperature and salinity. Aquaculture 126: 373–381. [CrossRef] [Google Scholar]
  • Nielsen D, Brock M, Rees G, Baldwin DS. 2003. Effects of increasing salinity on freshwater ecosystems in Australia. Aust J Bot 51: 655–665. [CrossRef] [Google Scholar]
  • Novitsky RA, Son MO. 2016. The first records of Marmorkrebs [Procambarus fallax (Hagen, 1870) f. virginalis] (Crustacea, Decapoda, Cambaridae) in Ukraine. Ecol Mont 5: 44–46. [Google Scholar]
  • Patoka J, Kalous L, Kopecký O. 2014. Risk assessment of the crayfish pet trade based on data from the Czech Republic. Biol Invasions 16: 2489–2494. [CrossRef] [Google Scholar]
  • Patoka J, Buřič M, Kolář V, et al. 2016. Predictions of marbled crayfish establishment in conurbations fulfilled: evidences from the Czech Republic. Biologia 71: 1380–1385. [CrossRef] [Google Scholar]
  • Perdikaris C, Kozák P, Kouba A, Konstantinidis E, Paschos I. 2012. Socio-economic drivers and non-indigenous freshwater crayfish species in Europe. Knowl Manag Aquat Ecosyst 404: 01. [CrossRef] [EDP Sciences] [Google Scholar]
  • Pourkazemi M. 2006. Caspian Sea sturgeon conservation and fisheries: past present and future. J Appl Ichthyol 22: 12–16 [CrossRef] [Google Scholar]
  • R Core Team. 2016. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. URL: https://www.R-project.org/. [Google Scholar]
  • Scholtz G, Braband A, Tolley L, et al. 2003. Ecology: parthenogenesis in an outsider crayfish. Nature 421: 806. [CrossRef] [PubMed] [Google Scholar]
  • Seebens H, Blackburn T, Dyer E, Genovesi P, Hulme P, Jeschke J. 2017. No saturation in the accumulation of alien species worldwide. Nat Commun 8: 14435. [CrossRef] [PubMed] [Google Scholar]
  • Seitz R, Vilpoux K, Hopp U, Harzsch S, Maier G. 2005. Ontogeny of the Marmorkrebs (marbled crayfish): a parthenogenetic crayfish with unknown origin and phylogenetic position. J Exp Zool A Comp Exp Biol 303: 393–405. [CrossRef] [PubMed] [Google Scholar]
  • Sharfstein BA, Chafin C. 1979. Red swamp crayfish: short-term effects of salinity on survival and growth. Prog Fish Cult 41: 156–157. [CrossRef] [Google Scholar]
  • Simberloff D, Martin J-L, Genovesi P, et al. 2013. Impacts of biological invasions: what's what and the way forward. Trends Ecol Evol 28: 58–66. [CrossRef] [PubMed] [Google Scholar]
  • Snell T. 1986. Effect of temperature, salinity and food level on sexual and asexual reproduction in Brachionus plicatilis (Rotifera). Mar Biol 92: 157–162. [Google Scholar]
  • Sousa R, Dias S, Antunes C. 2006. Spatial subtidal macrobenthic distribution in relation to abiotic conditions in the Lima estuary, NW of Portugal. Hydrobiologia 559: 135–148. [CrossRef] [Google Scholar]
  • Sousa R, Dias S, Antunes C. 2007. Subtidal macrobenthic structure in the lower Lima estuary, NW of Iberian Peninsula. Ann Zool Fennici 44: 303–313. [Google Scholar]
  • Sousa R, Dias S, Freitas V, Antunes C. 2008. Subtidal macrozoobenthic assemblages along the River Minho estuarine gradient (north-west Iberian Peninsula). Aquat Conserv 18: 1063–1077. [CrossRef] [Google Scholar]
  • Sousa R, Freitas FEP, Mota M, Nogueira AJA, Antunes C. 2013. Invasive dynamics of the crayfish Procambarus clarkii (Girard, 1852) in the international section of the River Minho (NW of the Iberian Peninsula). Aquat Conserv 23: 656–666. [Google Scholar]
  • Sousa R, Novais A, Costa R, Strayer D. 2014. Invasive bivalves in fresh waters: impacts from individuals to ecosystems and possible control strategies. Hydrobiologia 735: 233–251. [CrossRef] [Google Scholar]
  • Strayer DL. 2010. Alien species in fresh waters: ecological effects, interactions with other stressors, and prospects for the future. Freshwater Biol 55: 152–174. [CrossRef] [Google Scholar]
  • Taylor CA, Schuster GA, Cooper JE, et al. 2007. A reassessment of the conservation status of crayfishes of the United States and Canada after 10+ years of increased awareness. Fisheries 32: 372–389. [CrossRef] [Google Scholar]
  • Therneau MT, Grambsch MP. 2000. Modeling survival data: extending the Cox model. New York: Springer Science & Business Media. [CrossRef] [Google Scholar]
  • van Ginneken VJ, Maes GE. 2005. The European eel (Anguilla anguilla, Linnaeus), its lifecycle, evolution and reproduction: a literature review. Rev Fish Biol Fish 15: 367–398. [CrossRef] [Google Scholar]
  • Veselý L, Buřič M, Kouba A. 2015. Hardy exotics species in temperate zone: can “warm water” crayfish invaders establish regardless of low temperatures? Sci Rep 5: 16340. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Vodovsky N, Patoka J, Kouba A. 2017. Ecosystem of Caspian Sea threatened by pet-traded non-indigenous crayfish. Biol Invasions. DOI:10.1007/s10530-017-1433-1. [PubMed] [Google Scholar]
  • Vogt G. 2015. Bimodal annual reproduction pattern in laboratory-reared marbled crayfish. Invertebr Rep Dev 59: 218–223. [CrossRef] [Google Scholar]
  • Vogt G, Falckenhayn C, Schrimpf A, et al. 2015. The marbled crayfish as a paradigm for saltational speciation by autopolyploidy and parthenogenesis in animals. Biol Open 4: 1583–1594. [CrossRef] [PubMed] [Google Scholar]
  • Wheatly MG, Gannon AT. 1995. Ion regulation in crayfish: freshwater adaptations and the problem of molting. Amer Zool 35: 49–59. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.