Open Access
Review
Issue
Knowl. Manag. Aquat. Ecosyst.
Number 417, 2016
Article Number 15
Number of page(s) 16
DOI https://doi.org/10.1051/kmae/2016002
Published online 30 March 2016
  • Acker F., 2002. Analysis of Soft Algae and Enumeration of Total Number of Diatoms in USGS NAWQA Program Quantitative Targeted-Habitat (RTH and DTH) Samples. Protocol P-1363. In: Charles D.F., Knowles C., and Davis R.S. (eds.), Protocols for the analysis of algal samples collected as part of the US Geological Survey National Water-Quality Assessment Program. Report 02-06, Patrick Center for Environmental Research. The Academy of Natural Sciences, Philadelphia. [Google Scholar]
  • ANZECC, 2000. National Water Quality Management Strategy: The Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australian and New Zealand Environment and Conservation Council and Agriculture and Resourse Management Council of Australia and New Zealand, Canberra, Australia. [Google Scholar]
  • Biggs B.J.F., 1987. Effects of sample storage and mechanical blending on the quantitative analysis of river periphyton. Freshwater Biol., 18, 197–203. [CrossRef] [Google Scholar]
  • Biggs B.J.F., 1996. Patterns in benthic algae of streams, In: Stevenson R.J., Bothwell M.L. and Lowe R.L. (eds.), Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, San Diego, 31–56. [Google Scholar]
  • Biggs B.J.F., 2010. Eutrophication of streams and rivers: dissolved nutrient-chlorophyll relationships for benthic algae. J. N. Am. Benthol. Soc., 19, 17–31. [CrossRef] [Google Scholar]
  • Biggs B.J.F. and Kilroy C., 2000. Stream periphyton monitoring manual. National Institute of Water and Atmospheric Research for the New Zealand Ministry for the Environment, viewed 19 November 2013, available at: http:// www.smf.govt.nz/results/5092_periphytonmanual.,pdf. [Google Scholar]
  • Bobbink R., Hicks K., Galloway J., Spranger T., Alkemade R., Ashmore M., Bustamante M., Cinderby S., Davidson E., Dentener F., Emmett B., Erisman J.W., Fenn M., Gilliam F., Nordin A., Pardo L. and De Vries W., 2010. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol. Appl., 20, 30–59. [CrossRef] [PubMed] [Google Scholar]
  • Borchardt M.A., 1996. Nutrients. In: Stevenson R.J., Bothwell M.L. and Lowe R.L. (eds.), Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, San Diego, 184–228. [Google Scholar]
  • Bortolus A., 2008. Error cascades in the biological sciences: the unwanted consequences of using bad taxonomy in ecology. Ambio, 37, 114–118. [CrossRef] [PubMed] [Google Scholar]
  • Brown L.R., May J.T. andHunsaker C.T., 2008. Species composition and habitat associations of benthic algal assemblages in headwater streams of the Sierra Nevada, California. West N. Am. Naturalist, 68, 194–209. [CrossRef] [Google Scholar]
  • Cairns J.J. and Pratt J.R., 1993. A history of biological monitoring using benthic macroinvertebrates. In: Rosenberg D.M. and Resh V.H. (eds.), Freshwater biomonitoring and benthic macroinvertebrates. Chapman and Hall, New York, 10–28. [Google Scholar]
  • Clean Water Act, 1972. Federal Water Pollution Control Act – Amendments of 1972. Public Law 92-500.33.U.S.C.1251. [Google Scholar]
  • Danielson T.J., Loftin C.S., Tsomides L., DiFranco J.L. andConnors B., 2011. Algal bioassessment metrics for wadeable streams and rivers of Maine, USA. J. N. Am. Benthol. Soc., 30, 1033–1048. [CrossRef] [Google Scholar]
  • Delgardo C., Pardo I. andLiliana G., 2010. A multimetric diatom index to assess the ecological status of coastal Galician rivers (NW Spain). Hydrobiologia, 644, 371–384. [CrossRef] [Google Scholar]
  • Dodds W.K. andWelch E.B., 2000. Establishing nutrient criteria in streams. J. N. Am. Benthol. Soc., 19, 186–196. [CrossRef] [Google Scholar]
  • Dodds W.K., Smith V.H. andZander B., 1997. Developing nutrient targets to control benthic chlorophyll levels in streams: a case study of the Clark Fork River. Water Res., 31, 1738–1750. [CrossRef] [Google Scholar]
  • Dolédec S. andStatzner B., 2010. Responses of freshwater biota to human disturbances: contribution of J-NABS to developments in ecological integrity assessments. J. N. Am. Benthol. Soc., 29, 286–311. [CrossRef] [Google Scholar]
  • Douterelo I., Perona E. andMateo P., 2004. Use of cyanobacteria to assess water quality in running waters. Environ. Pollut., 127, 377–384. [CrossRef] [PubMed] [Google Scholar]
  • Drummond C.S., Hall J.D., Karol K.G., Delwiche C.F. andMcCourt R.M., 2005. Phylogeny of Spirogyra and Sirogonium (Zygnematophyceae) based on rbcL sequence data. J. Phycol., 41, 1055–1064. [CrossRef] [Google Scholar]
  • Dufrêne M. andLegendre P., 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr., 67, 345–366. [Google Scholar]
  • European Commission, 2000. Directive 2000/60/EC of the European Parlament and Council, establishing a framework for Community action in the field of water policy. Official Journal of the European Community, 327, 1–72. [Google Scholar]
  • Fernandez-Piñas F., Leganés F., Mateo P. and Bonilla I., 1991. Blue-green algae (cyanobacteria) as indicators of water quality in two Spanish rivers. In: Whitton B.A., Rott E. and Friedrich G. (eds.), Use of algae for monitoring rivers. Institut für Botanik. Universität Innsbruck, Innsbruck, 151–156. [Google Scholar]
  • Fetscher A.E., Busse L.B. and Ode P.R., 2009. Standard operating procedure for collecting stream algae samples and associated physical habitat and chemical data for ambient bioassessments in California. California State Water Resources Control Board Surface Water Ambient Monitoring Program (SWAMP) Bioassessment SOP 002. [Google Scholar]
  • Fetscher A.E., Sutula M.A., Busse L.B. and Stein E.D., 2013. Condition of California perennial, wadeable streams based on algal indicators. California State Water Resources Control Board Surface Water Ambient Monitoring Program (SWAMP) Final Technical Report. [Google Scholar]
  • Fetscher A.E., Stancheva R., Kociolek J.P., Sheath R.G., Stein E.D., Mazor R.D., Ode P.R. andBusse L.B., 2014. Development and comparison of stream indices of biotic integrity using diatoms vs. non-diatom algae vs. a combination. J. Appl. Phycol., 26, 433–450. [CrossRef] [Google Scholar]
  • Fetscher A.E., Howard M.D.A., Stancheva R., Kudela R.M., Stein E.D., Sutula M.A., Busse L.B., Sheath R.G., 2015. Wadeable streams as widespread sources of benthic cyanotoxin production in California, USA. Harmful Algae, 49, 105–116. [CrossRef] [Google Scholar]
  • Foerster J., Gutowski A. andSchaumburg J., 2004. Defining types of running waters in Germany using benthic algae: a prerequisite for monitoring according to the Water Framework Directive. J. Appl. Phycol., 16, 407–418. [CrossRef] [Google Scholar]
  • Fore L.S., Karr J.R. andConquest L.L., 1994. Statistical properties of an index of biotic integrity used to evaluate water resources. Can. J. Fish. Aquat. Sci., 51, 1077–1087. [CrossRef] [Google Scholar]
  • Francoeur S.N., Biggs B.J.F., Smith R.A. andLowe R.L., 1999. Nutrient limitation of algal biomass accrual in streams: seasonal patterns and a comparison of methods. J. N. Am. Benthol. Soc., 18, 242–260. [CrossRef] [Google Scholar]
  • Frey D.G., 1977. Biological integrity of water: a historical approach. In: Ballentine R.K. and Guarraia L.J. (eds.), The integrity of water: a symposium. US Environmental Protection Agency, Washington, DC. [Google Scholar]
  • Gartzia De Bikuña B., López E., Leonardo J.M., Arrate J., Martínez A., Agirre A. andManzanos A., 2015. Reduction of sampling effort assessing macroinvertebrate assemblages for biomonitoring of rivers. Knowl. Manag. Aquat. Ecosyst., 416, 08. [CrossRef] [EDP Sciences] [Google Scholar]
  • Gibson M.T. andWhitton B.A., 1987. Hair phosphatase activity and environmental chemistry in freshwater Stigeoclonium, Chaetophora and Draparnaldia (Chaetophorales). Brit. Phycol. J., 22, 11–22. [CrossRef] [Google Scholar]
  • Goulden C.E., 2011. The need for capacity building for biomonitoring of lakes and streams in Asia. Lakes & Reservoirs: Research & Management, 16, 159–163. [CrossRef] [Google Scholar]
  • Griffith M.B., Hill B.H., Herlihy A.T. andKaufmann P.R., 2002. Multivariate analysis of periphyton assemblages in relation to environmental gradients in Colorado Rocky Mountain streams. J. Phycol., 38, 83–95. [CrossRef] [Google Scholar]
  • Gutowski A. and Foerster J., 2009. Benthische Algen ohne Diatomeen und Characeen. Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen, viewed 3 April 2014, http://www.lanuv.nrw.de/veroeffentlichungen/arbeitsblatt/arbla9/arbla9start.htm. [Google Scholar]
  • Gutowski A., Foerster J. andSchaumburg J., 2004. The use of benthic algae, excluding diatoms and Charales, for the assessment of the ecological status of running waters: a case history from Germany. Oceanol. Hydrobiol. Stud., 33, 3–15. [Google Scholar]
  • Hering D., Feld C.K., Moog O. andOfenböck T., 2006. Cook book for the development of a Multimetric Index for biological condition of aquatic ecosystems: experiences from the European AQEM and STAR projects and related initiatives. Hydrobiologia, 566, 311– 324. [CrossRef] [Google Scholar]
  • Hill B.H., Herlihy A.T., Kaufmann P.R., Stevenson R.J., McCormick F.H. and Burch Johnson C. 2000. Use of periphyton assemblage data as an index of biotic integrity. J. N. Am. Benthol. Soc., 19, 50–67. [CrossRef] [Google Scholar]
  • Hill B.H., Herlihy A.T., Kaufmann P.R., DeCelles S.J. andBorgh M.A.V., 2003. Assessment of streams of the eastern United States using a periphyton index of biotic integrity. Ecol. Indic., 2, 325–338. [CrossRef] [Google Scholar]
  • Hughes R.M. andPeck D.V., 2008. Acquiring data for large aquatic resource surveys: the art of compromise among science, logistics, and reality. J. N. Am. Benthol. Soc., 27, 837–859. [CrossRef] [Google Scholar]
  • Jarlman A., Lindstrøm E.A., Eloranta P. and Bengtsson R., 1996. Nordic standard for assessment of environmental quality in running water. In: Whitton B.A. and Rott E. (eds.), Use of Algae for Monitoring Rivers II. Studia, Innsbruck, 17–28. [Google Scholar]
  • Johnson R.K., Hering D., Furse M.T. andClarke R.T., 2006. Detection of ecological change using multiple organism groups: metrics and uncertainty. Hydrobiologia, 566, 115–137. [CrossRef] [Google Scholar]
  • Karr J.R., 1981. Assessment of biotic integrity using fish communities. Fisheries, 6, 21–27. [CrossRef] [Google Scholar]
  • Kelly M.G., 2006. A comparison of diatoms with other phytobenthos as indicators of ecological status in streams in northern England, Proceedings of the 18th International Diatom Symposium. Biopress, Bristol. [Google Scholar]
  • Kelly M.G., 2013. Data rich, information poor? Phytobenthos assessment and the Water Framework Directive. Eur. J. Phycol., 48, 437–450. [CrossRef] [Google Scholar]
  • Kelly M.G., Cazaubon A., Coring E., DelUomo A., Ector L., Goldsmith B., Guasch H., Hürlimann J., Jarlman A., Kaweka B., Kwandrans J., Laugaste R., Lindstrøm E.A., Leitao M., Marvan P., Padisak J., Pipp E., Prygiel J., Rott E., Sabater S., van Dam H. andVizinet J., 1998. Recommendations for routine sampling of diatoms for water quality assessments in Europe. J. Appl. Phycol., 10, 215–224. [CrossRef] [Google Scholar]
  • Kelly M.G., King L., Jones R.I., Barker P.A. andJamieson B.J., 2008. Validation of diatoms as proxies for phytobenthos when assessing ecological status in lakes. Hydrobiologia, 610, 125–129. [CrossRef] [Google Scholar]
  • Knutzen J., Lingsten L., Lindstrøm E.A., Traaen T.S. andAanes K.J., 1980. Nasjonalt programme for overvåking av vannresurser. Pilotprosjekt Målselva/Barduelva 1978. NIVA rapport, 1187, 1–55. [Google Scholar]
  • Kolkwitz R. andMarsson M., 1908. Ökologie der pflanzlichen Saprobien. Ber. Dtsch. bot. Ges., 26, 505–519. [Google Scholar]
  • Konar B. andIken K., 2009. Influence of taxonomic resolution and morphological functional groups in multivariate analyses of macroalgal assemblages. Phycologia, 48, 24–31. [CrossRef] [Google Scholar]
  • Lavoie I., Vincent W.F., Pienitz R. andPainchaud J., 2004. Benthic algae as bioindicators of agricultural pollution in the streams and rivers of southern Québec (Canada). Aquat. Ecosyst. Health Manag., 7, 43–58. [CrossRef] [Google Scholar]
  • Lazorchak J.M., Klemm D.J. and Peck D.V., 1998. Environmental Monitoring and Assessment Program-Surface Waters. Field Operations and Methods for Measuring the Ecological Condition of Wadeable Streams. EPA/620/R-94/004F. US Environmental Protection Agency, Washington, D.C. [Google Scholar]
  • Lazorchak J.M., Hill B.H., Averill D.K., Peck D.V. and Klemm D.J., 2000. Environmental Monitoring and Assessment Program-Surface Waters: Field Operations and Methods for Measuring the Ecological Condition of Non-Wadeable Rivers and Streams. US Environmental Protection Agency, Cincinnati, OH. [Google Scholar]
  • Lindstrøm E.A., Johansen S.W. andSaloranta T., 2004. Periphyton in running waters – long-term studies of natural variation. Hydrobiologia, 521, 63–86. [CrossRef] [Google Scholar]
  • Loez C. and Topalián, M.L., 1997. Use of algae for monitoring rivers in Argentina with a speciel emphasis for the Reconquista river (region of Buenos Aires). In: Prygiel J., Whitton B.A., and Bukowska J. (eds.), Use of algae for monitoring rivers. Institut für Botanik, Universität Innsbruck, Innsbruck, 72–83. [Google Scholar]
  • Lowe R.L., 2003. Keeled and canaled diatoms. In: Wehr J.D. and Sheath R.G. (eds.), Freshwater Algae of North America: Ecology and Classification. Academic Press, San Diego, CA, 669–684. [Google Scholar]
  • Lowe, R.L. and Pan Y., 1996. Benthic algal communities as biological monitors. In: Stevenson R.J., Bothwell M.L. and Lowe R.L. (eds.), Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, San Diego, 705–740. [Google Scholar]
  • Luce J.J., Cattaneo A. andLapointe M.F., 2010. Spatial patterns in periphyton biomass after low-magnitude flow spates: geomorphic factors affecting patchiness across gravel-cobble riffles. J. N. Am. Benthol. Soc., 29, 614–626. [CrossRef] [Google Scholar]
  • Manoylov K.M., 2014. Taxonomic identification of algae (morphological and molecular): species concepts, methodologies, and their implication for ecological bioassessment. J. Phycol., 50, 409–424. [CrossRef] [PubMed] [Google Scholar]
  • Mateo P., Berrendero E., Perona E., Loza V. andWhitton B.A., 2010. Phosphatase activities of cyanobacteria as indicators of nutrient status in a Pyrenees river. Hydrobiologia, 652, 255–268. [CrossRef] [Google Scholar]
  • Meyer J.L., Strayer D.L., Wallace J.B., Eggert S.L., Helfman G.S. andLeonard N.E., 2007. The contribution of headwater streams to biodiversity in river networks. J. Am. Water Resour. Assoc., 43, 86–103. [CrossRef] [Google Scholar]
  • Moulton S.R., Kennen J.G., Goldstein R.M. and Hambrook J.A., 2002. Revised Protocols for Sampling Algal, Invertebrate, and Fish Communities as Part of the National Water-Quality Assessment Program. US Geological Survey, Open File Report 02-150, Reston, VA. [Google Scholar]
  • Mulholland P.J. andRosemond A.D., 1992. Periphyton response to longitudinal nutrient depletion in a woodland stream: evidence of upstream-downstream linkage. J. N. Am. Benthol. Soc., 11, 405–419. [CrossRef] [Google Scholar]
  • Munn M.D., Black R.W. andGruber S.J., 2002. Response of benthic algae to environmental gradients in an agriculturally dominated landscape. J. N. Am. Benthol. Soc., 21, 221–237. [CrossRef] [Google Scholar]
  • Niemi G.J. andMcDonald M.E., 2004. Application of ecological indicators, Annu. Rev. Ecol. Evol. Syst., 35, 89–111. [CrossRef] [Google Scholar]
  • O’Brien P.J. andWehr J.D., 2010. Periphyton biomass and ecological stoichiometry in streams within an urban to rural land-use gradient. Hydrobiologia, 657, 89–105. [CrossRef] [Google Scholar]
  • Ontario Ministry of the Environment, 2011. An Algal Bioassessment Protocol for use in Ontario Rivers, viewed 20 November 2013, http://www.ene.gov.on.ca/environment/en/resources/STDPROD_101254.html [Google Scholar]
  • Palmer C.M., 1969. A composite rating of algae tolerating organic pollution. J. Phycol., 5, 78–82. [CrossRef] [PubMed] [Google Scholar]
  • Palmer M.A. andPoff N.L., 1997. The influence of environmental heterogeneity on patterns and processes in streams. J. N. Am. Benthol. Soc., 16, 169–173. [CrossRef] [Google Scholar]
  • Pan Y., Stevenson R.J., Hill B.H., Kaufmann P.R. andHerlihy A.T., 1999. Spatial patterns and ecological determinants of benthic algal assemblages in Mid- Atlantic Highland streams. J. Phycol., 35, 460–468. [CrossRef] [Google Scholar]
  • Pfister P. and Pipp E., 2013. Guidance on the monitoring of the biological quality elements – part A3 – phytobenthos. Federal Ministry of Agriculture, Forestry, Environment and Water Management Department VII A – 1012, Vienna. [Google Scholar]
  • Pipp E. and Rott E., 1996. Recent developments in the use of benthic algae (excluding diatoms) for monitoring rivers in Austria and Germany. In: Whitton B.A. and Rott E. (eds.), Use of algae for monitoring rivers II. Institut für Botanik, Universität Innsbruck, Innsbruck, 160–165. [Google Scholar]
  • Poikane S., 2015. Current state-of-art and future needs in algae-based monitoring from the perspective of the EU. In: Cantonati M., Kelly M.G., Rott E., Sabater S., Stevenson R.J., Whitton B.A., Schneider S., Shubert E.L., Van de Vijever B., Vis M.L. and Angeli N. (eds.), Use of algae for monitoring rivers and comparable habitats. Abstract Book, Trento, Italy, 23. [Google Scholar]
  • Poikane S., Zapoukas N., Borja S., Davies S.P., van de Bund W. andBirk S., 2014. Intercalibration of aquatic ecological assessment methods in the European Union: Lessons learned and way forward. Environ. Sci. Policy, 44, 237–246. [CrossRef] [Google Scholar]
  • Ponader K.C., Charles D.F. andBelton T.J., 2007. Diatom based TP and TN inference models and indices for monitoring nutrient enrichment of New Jersey streams. Ecol. Indic., 7, 79–93. [CrossRef] [Google Scholar]
  • Porter S.D., 2008. Algal Attributes: An Autecological Classification of Algal Taxa Collected by the National Water-Quality Assessment Program. US Geological Survey Data Series 329. Viewed 25 November 2013, http://pubs.usgs.gov/ds/ds329/. [Google Scholar]
  • Porter S.D., Mueller D.K., Spahr N.E., Munn M.D. andDubrovsky N.M., 2008. Efficacy of algal metrics for assessing nutrient and organic enrichment in flowing water. Freshwater Biol., 53, 1036–1054. [CrossRef] [Google Scholar]
  • Potapova M.G. and Carlisle D.M., 2011. Development and application of indices to assess the condition of algal assemblages in US streams and rivers. Open-File Report 2011–1126, US Geological Survey. [Google Scholar]
  • Potapova M.G. andCharles D.F., 2005. Choice of substrate in algae-based water-quality assessment. J. N. Am. Benthol. Soc., 24, 415–427. [CrossRef] [Google Scholar]
  • Potapova M.G., Charles D.F., Ponader K.C. andWinter D.M., 2004. Quantifying species indicator values for trophic diatom indices: a comparison of approaches. Hydrobiologia, 517, 25–41. [CrossRef] [Google Scholar]
  • Resh V.H., 2008. Which group is best? Attributes of different biological assemblages used in freshwater biomonitoring programs. Environ. Monit. Assess. 138, 131–138. [CrossRef] [PubMed] [Google Scholar]
  • Rimet F. andBouchez A., 2012. Biomonitoring river diatoms: Implications of taxonomic resolution. Ecol. Indic., 15, 92–99. [CrossRef] [Google Scholar]
  • Rodrigues L. and Bicudo D.C., 2001. Similarity among periphyton algal communities in a lentic-lotic gradi ent of the upper Parana river floodplain, Brazil. Revista Brasileira de Botânica, 24: 235–248. [Google Scholar]
  • Rott E. andSchneider S.C., 2014. A comparison of ecological optima of soft-bodied benthic algae in Norwegian and Austrian rivers and consequences for river monitoring in Europe. Sci. Total. Environ., 475, 180–186. [CrossRef] [PubMed] [Google Scholar]
  • Rott E., Hofmann G., Pall K., Pfister P. and Pipp E., 1997. Indikationsliste für Aufwuchsalgen in Fließgewässern in Österreich: Teil 1. Saprobielle Indication. Projekt des Bundesministeriums für Land- und Forstwirtschaft, Wasserwirtschaftskataster. [Google Scholar]
  • Rott E., Pipp E., Pfister P., Van Dam H., Ortler K., Binder N. and Pall K., 1999. Indikationslisten für Aufwuchsalgen in Österreichischen Fließgewässern: Teil 2. Trophieindication. Bundesministerium f. Land- und Forstwirtschaft, Zahl 41.034/08- IVA 1/97, Wien. [Google Scholar]
  • Rusanov A.G., Stanislavskaya E.V. andÁcs É., 2012. Periphytic algal assemblages along environmental gradients in the rivers of the Lake Ladoga basin, Northwestern Russia: implication for the water quality assessment. Hydrobiologia, 695, 305–327. [CrossRef] [Google Scholar]
  • Schaumburg J., Schranz C., Foerster J., Gutowski A., Hofmann G., Meilinger P., Schneider S. andSchmedtje U., 2004. Ecological classification of macrophytes and phytobenthos for rivers in Germany according to the Water Framework Directive. Limnologica, 34, 283–301. [CrossRef] [Google Scholar]
  • Schaumburg J., Schranz C., Stelzer C., Vogel A. and Gutowski A., 2012. Instruction Manual for the Assessment of Running Water Ecological Status in Accordance with the Requirements of the EG-Water Framework Directive: Macrophytes and Phytobenthos, Bavarian Environment Agency, Augsburg. [Google Scholar]
  • Schmedtje U., Gutowski A., Hofmann G., Leukart P., Melzer A., Mollenhauer D., Schneider S. and Tremp H., 1998. Trophie kartierung von aufwuchs- und makrophytendominierten Fliesgewassern. Informationsberichte des Bayerischen Landesamtes fur Wasserwirtschaft 4/98. [Google Scholar]
  • Schneider S., 2011. Impact of calcium and TOC on biological acidification assessment in Norwegian rivers. Sci. Total Environ., 409, 1164–1171. [CrossRef] [PubMed] [Google Scholar]
  • Schneider S.C. andLindstrøm E.A., 2009. Bioindication in Norwegian rivers using non-diatomaceous benthic algae: the acidification index periphyton (AIP). Ecol. Indic., 9, 1206–1211. [CrossRef] [Google Scholar]
  • Schneider S.C. andLindstrøm E.A., 2011. The periphyton index of trophic status PIT: a new eutrophication metric based on non-diatomaceous benthic algae in Nordic rivers, Hydrobiologia, 665, 143–155. [CrossRef] [Google Scholar]
  • Schneider S.C., Lawniczak A.E., Piciñska-Faltynowicz J. and Szoszkiewicz K., 2012. Do macrophytes, diatoms and non-diatom benthic algae give redundant information? Results from a case study in Poland. Limnologica, 42, 204–211. [CrossRef] [Google Scholar]
  • Schneider S.C., Kahlert M. andKelly M.G., 2013. Interactions between pH and nutrients on benthic algae in streams and consequences for ecological status assessment and species richness patterns. Sci. Total Environ., 444, 73–84. [CrossRef] [PubMed] [Google Scholar]
  • Sheath R.G. and Hambrook J.A., 1990. Freshwater ecology. In: Cole K.M. and Sheath R.G. (eds.), Biology of the Red Algae. Cambridge University Press, New York, 423–454. [Google Scholar]
  • Sheath R.G. andCole K.M., 1992. Biogeography of stream macroalgae in North America. J. Phycol., 28, 448–460. [CrossRef] [Google Scholar]
  • Sládeček V., 1973. System of water quality from the biological point of view. Arch. Hydrobiol.–Beih. Ergebn. Limnol., 7, 1–218. [Google Scholar]
  • Stancheva R., Fetscher A.E. andSheath R.G., 2012a. A novel quantification method for stream-inhabiting, non-diatom benthic algae, and its application in bioassessment. Hydrobiologia, 684, 225–239. [CrossRef] [Google Scholar]
  • Stancheva R., Hall J.D. andSheath R.G., 2012b. Systematics of the genus Zygnema (Zygnematophyceae, Charophyta) from Californian watersheds. J. Phycol., 48, 409–422. [CrossRef] [PubMed] [Google Scholar]
  • Stancheva R., Hall J.D., McCourt R.M. andSheath R.G., 2013a. Identity and phylogenetic placement of Spirogyra species (Zygnematophyceae, Charophyta) from California streams and elsewhere. J. Phycol., 49, 588–607. [CrossRef] [PubMed] [Google Scholar]
  • Stancheva R., Sheath R.G., Read B.A., McArthur K.D., Schroepfer C., Kociolek J.P. andFetscher A.E., 2013b. Nitrogen-fixing cyanobacteria (free-living and diatom endosymbionts): their use in southern California stream bioassessment. Hydrobiologia, 720, 111–127. [CrossRef] [Google Scholar]
  • Stancheva R., Fuller C. and Sheath R.G., 2014. Soft-bodied stream algae of California, viewed 9 January 2015, http://dbmuseblade.colorado.edu/DiatomTwo/sbsac_site/index.php. [Google Scholar]
  • Stancheva R., Busse L., Kociolek J.P. and Sheath R.G., 2015. Standard Operating Procedures for Laboratory Processing and Identification of Stream Algae in California. California State Water Resources Control Board Surface Water Ambient Monitoring Program (SWAMP) Bioassessment SOP 0003. [Google Scholar]
  • Stevenson R.J., 2014. Ecological assessments with algae: a review and synthesis. J. Phycol., 50, 437–461. [CrossRef] [PubMed] [Google Scholar]
  • Stevenson R.J. and Bahls L.L., 1999. Periphyton protocols. In: Barbour M.T., Gerritsen J. and Snyder B.D. (eds.), Rapid Bioassessment Protocols for Use in Wadeable Streams and Rivers: Periphyton, Benthic Macroinvertebrates, and Fish. EPA 841-B-99-002. United States Environmental Protection Agency, Washington, DC. [Google Scholar]
  • Stevenson R.J., Bothwell M.L. and Lowe R.L., 1996. Algal Ecology: Freshwater Benthic Ecosystems, Academic Press, San Diego, CA. [Google Scholar]
  • Stevenson R.J., Pan Y. and van Dam H., 2010. Assessing environmental conditions in rivers and streams with diatoms. In: Smol J.P. and Stoermer E.F. (eds.), The Diatoms: Applications for the Environmental and Earth Sciences, 2nd edn. Cambridge University Press, Cambridge, MA, 2nd edition. [Google Scholar]
  • Stevenson R.J., Bennett B.J., Jordan D.N. andFrench R.D., 2012. Phosphorus regulates stream injury by filamentous green algae, DO, and pH with threshold in responses. Hydrobiologia, 695, 25–42. [CrossRef] [Google Scholar]
  • Stoddard J.L., Larsen D.P., Hawkins C.P., Johnson R.K. andNorris R.H., 2006. Setting expectations for the ecological condition of streams: the concept of reference condition. Ecol. Appl., 16, 1267–1276. [CrossRef] [PubMed] [Google Scholar]
  • ter Braak C.J.F. and van Dam H., 1989. Inferring pH from diatoms: a comparison of old and new calibration methods. Hydrobiologia, 178, 209–223. [CrossRef] [Google Scholar]
  • USEPA, 2002. A SAB report: a framework for assessing and reporting on ecological condition. EPASAB-EPEC-02–009. US Environmental Protection Agency, Washington, DC. [Google Scholar]
  • USEPA, 2007. National Rivers and Streams Assessment: Field Operations Manual., EPA-841-B-07009. US Environmental Protection Agency, Washington, DC. [Google Scholar]
  • USEPA, 2008. National Rivers and Streams Assessment: Laboratory Methods Manual., EPA-841-B07-010. US Environmental Protection Agency, Office of Water and Office of Research and Development, Washington, DC. [Google Scholar]
  • VanLandingham S.L., 1982. Guide to the identification, environmental requirements and pollution tolerance of bluegreen algae (Cyanophyta). EPA-600/3-82-07. [Google Scholar]
  • Vis C., Hudon C., Cattaneo A. andPinel-Alloul B., 1998. Periphyton as an indicator of water quality in the St Lawrence River (Québec, Canada). Environ. Pollut., 101, 13–24. [CrossRef] [PubMed] [Google Scholar]
  • Wehr J.D., Stancheva R., Truhn K. andSheath R.G., 2013. Discovery of the rare freshwater brown alga Pleurocladia lacustris (Ectocarpales, Phaeophyceae) in California streams. West N. Am. Naturalist, 73, 148–157. [CrossRef] [Google Scholar]
  • Welch E.B., Jacoby J.M., Horner R.R. andSeeley M.R., 1988. Nuisance biomass levels of periphytic algae in streams. Hydrobiologia, 157, 161–168. [CrossRef] [Google Scholar]
  • Whitton B.A., 1988. Hairs in eukaryotic algae. In: Round F.E. (ed.), Algae and the Aquatic Environment. Contributions in Honour of J.W.G. Lund. Biopress, Bristol, UK, 226–460. [Google Scholar]
  • Whitton B.A., 1991. Use of phosphatase assays with algae to assess phosphorus status of aquatic environments. In: Jeffrey D.W. and Madden B. (eds.), Bioindicators and Environmental Management. Academic Press, London, 295–310. [Google Scholar]
  • Whitton B.A. andKelly M.G., 1995. Use of algae and other plants for monitoring rivers. Aust. J. Ecol., 20, 45–56. [CrossRef] [Google Scholar]
  • Whitton B.A. and Mateo P., 2012. Rivulariaceae. In: Whitton B.A. (ed.), Ecology of Cyanobacteria II. Their Diversity in Space and Time. Springer, London, UK, 561–592. [Google Scholar]
  • Whitton B.A., 2012. Changing approaches to monitoring during the period of the Use of Algae for Monitoring Rivers symposia. Hydrobiologia, 695, 7–16. [CrossRef] [Google Scholar]
  • Whitton B.A., 2013. Use of Benthic Algae and Bryophytes for Monitoring Rivers. J. Ecol. Environ., 36, 95–100. [CrossRef] [Google Scholar]
  • Whitton B.A., Yelloly J.M., Christmas M. andHernández I., 1998. Surface phosphatase activity of benthic algal communities in a stream with highly variable ambient phosphate concentrations. Verh. Int. Ver. Theoret. Angew. Limnol., 26, 967–972. [Google Scholar]
  • Whitton B.A., Clegg E., Christmas M., Gemmell J.J. and Robinson P.J., 2002. Development of Phosphastase Assay for Monitoring Nutrients in Rivers – Methodology Manual for Measurement of Phosphatase Activity in Mosses and Green Algae. Environment Agency of England and Wales STRE106-E-P. [Google Scholar]
  • Winterbourn M.J., 1990. Interactions among nutrients, algae and invertebrates in a New-Zealand mountain stream. Freshwater Biol., 23, 463–4. [CrossRef] [Google Scholar]
  • Zelinka, M. and Marvan, P., 1961. Zur Präzisierung der biologischen Klassifikation der Reinheit fließender Gewässe. Arch. Hydrobiol., 57, 389–407. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.