Issue
Knowl. Manag. Aquat. Ecosyst.
Number 417, 2016
Topical issue on Crayfish
Article Number 16
Number of page(s) 9
DOI https://doi.org/10.1051/kmae/2016003
Published online 03 May 2016
  • Bíró P., 1997. Temporal variation in Lake Balaton and its fish populations. Ecol. Freshw. Fish., 6, 196–216. [Google Scholar]
  • Braband A., Kawai T. andScholtz G., 2007. The phylogenetic position of the East Asian freshwater crayfish Cambaroides within the Northern Hemisphere Astacoidea (Crustacea, Decapoda, Astacida) based on molecular data. J. Zool. Syst. Evol. Res., 44, 17–24. [CrossRef] [Google Scholar]
  • Carpenter S.R. andLodge D.M., 1986. Effects of submersed macrophytes on ecosystem processes. Aquat. Bot., 26, 341–370. [Google Scholar]
  • Chucholl C., 2013. Invaders for sale: trade and determinants of introduction of ornamental freshwater crayfish. Biol. Invasions, 15, 125–141. [Google Scholar]
  • Chucholl C., 2014. Predicting the risk of introduction and establishment of an exotic aquarium animal in Europe: insights from one decade of Marmorkrebs (Crustacea, Astacida, Cambaridae) releases. Manag. Biol. Invasion., 5, 309–318. [Google Scholar]
  • Faulkes Z., 2010. The spread of the parthenogenetic marbled crayfish, Marmorkrebs (Procambarus sp.), in the North American pet trade. Aquat. Invasions, 5, 447–450. [Google Scholar]
  • Feminella J.W. andResh V.H., 1989. Submersed macrophytes and grazing crayfish: an experimental study of herbivory in a California freshwater marsh. Holarct. Ecol., 12, 1–8. [Google Scholar]
  • Feria T.P. andFaulkes Z., 2011. Forecasting the distribution of Marmorkrebs, a parthenogenetic crayfish with high invasive potential, in Madagascar, Europe, and North America. Aquat. Invasions, 6, 55–67. [Google Scholar]
  • Folmer O., Black M., Hoeh W., Lutz R. andVrijenhoek R., 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol., 3, 294–299. [Google Scholar]
  • Freeman M.A., Turnbull J.F., Yeomans W.E. andBean C.W., 2010. Prospects for management strategies of invasive crayfish populations with an emphasis on biological control. Aquat. Conserv., 20, 211–223. [Google Scholar]
  • Government of Hungary, 2004. 275/2004. (X. 8.) Kormányrendelet az európai közösségi jelentőségű természetvédelmi rendeltetésű területekröl. Magyar Közlöny, 143, 11756–11817. [Google Scholar]
  • Hall T.A., 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser., 41, 95-98. [Google Scholar]
  • Harka Á. and Sallai Z., 2004. Magyarország halfaunája. Képes határozó és elterjedési tájékoztató. Nimfea Természetvédelmi Egyesület, Szarvas, 269 p. [Google Scholar]
  • Harka Á., Nyeste K., Nagy L. andErös T., 2014. Jewel cichlids (Hemichromis guttatus Günther, 1862) in thermal water of Lake Hévíz (Western Hungary). Pisces Hungarici, 8, 29–34. [Google Scholar]
  • Hebert P.D.N., Cywinska A., Ball S.L. and de Waard J.R., 2003. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. B Biol. Sci., 270, 313–321. [Google Scholar]
  • Hobbs H.H., Jr., 1989. An illustrated checklist of the american crayfishes (Decapoda: Astacidae, Cambaridae, and Parastacidae). Smithsonian Institution Press, Washington, D.C., 236 p. [Google Scholar]
  • Holdich D.M., 2002. Distribution of crayfish in Europe and some adjoining countries. Bull. Fr. Pêche Piscic., 367, 611–650. [Google Scholar]
  • Holdich D.M., Reynolds J.D., Souty–Grosset C. andSibley P.J., 2009. A review of the ever increasing threat to European crayfish from non-indigenous crayfish species. Knowl. Manag. Aquat. Ecosyst., 394-395, 11. [Google Scholar]
  • Illés P., 2002. A jelzőrák (Pacifastacus leniusculus) előfordulása Magyarországon. Cinege – Vasi Madártani Tájékoztató, 7, 39–41. [Google Scholar]
  • Jones J.P.G., Rasamy J.R., Harvey A., Toon A., Oidtmann B., Randrianarison M.H., Raminosoa N. andRavoahangimalala O.R., 2009. The perfect invader: a parthenogenic crayfish poses a new threat to Madagascar’s freshwater biodiversity. Biol. Invasions, 11, 1475–1482. [CrossRef] [Google Scholar]
  • Kaldre K., Meženin A., Paaver T. and Kawai T., 2016. A preliminary study on the tolerance of marble crayfish Procambarus fallax f. virginalis to low temperature in nordic climate. In: Kawai T., Faukles Z. and Scholtz G. (eds.), Freshwater Crayfish: A Global Overview. Boca Raton: CRC Press. [Google Scholar]
  • Kawai T., Scholtz G., Morioka S., Ramanamandimby F., Lukhaup C. andHanamura Y., 2009. Parthenogenetic alien crayfish (Decapoda: Cambaridae) spreading in Madagascar. J. Crust. Biol., 29, 562–567. [Google Scholar]
  • Keller N.S., Pfeiffer M., Roessink I., Schulz R. andSchrimpf A., 2014. First evidence of crayfish plague agent in populations of the marbled crayfish (Procambarus fallax forma virginalis). Knowl. Manag. Aquat. Ecosyst., 414, 15. [Google Scholar]
  • Kouba A., Petrusek A. andKozák P., 2014. Continental-wide distribution of crayfish species in Europe: update and maps. Knowl. Manag. Aquat. Ecosyst., 413, 05. [Google Scholar]
  • Kovács T., Juhász P. andAmbrus A., 2005. Adatok a Magyarországon élõ folyami rákok (Decapoda: Astacidae, Cambaridae) elterjedéséhez. Folia Historico Naturalia Musei Matraensis, 29, 85–89. [Google Scholar]
  • Lipták B. and Vitázková B., 2015. Beautiful, but also potentially invasive. Ekológia (Bratislava), 34, 2, 155–162. [Google Scholar]
  • Lukhaup C., 2001. Procambarus sp. – Der Marmorkrebs. Aquaristik Aktuell, 7-8, 48–51. [Google Scholar]
  • Marten M., Werth C. andMarten D., 2004. Der Marmorkrebs (Cambaridae, Decapoda) in Deutschland – ein weiteres Neozoon im Einzugsgebiet des Rheins. Lauterbornia, 50, 17–23. [Google Scholar]
  • Martin P., Kohlmann K. andScholtz G., 2007. The parthenogenetic Marmorkrebs (marbled crayfish) produces genetically uniform offspring. Naturwissenschaften, 94, 843–846. [CrossRef] [PubMed] [Google Scholar]
  • Martin P., Dorn N.J., Kawai T., van der Heiden C. andScholtz G., 2010. The enigmatic Marmorkrebs (marbled crayfish) is the parthenogenetic form of Procambarus fallax (Hagen, 1870). Contrib. Zool., 79, 107–118. [Google Scholar]
  • Martin P., Thonagel S. and Scholtz G., 2016. The parthenogenetic Marmorkrebs (Malacostraca: Decapoda: Cambaridae) is a triploid organism. J. Zoolog. Syst. Evol. Res., 54, 1, 13–21. [Google Scholar]
  • Moorhouse T.P., Poole A.E., Evans L.C., Bradley D.C. andMacdonald D.W., 2014. Intensive removal of signal crayfish (Pacifastacus leniusculus) from rivers increases numbers and taxon richness of macroinvertebrate species. Ecol. Evol., 4, 494–504. [Google Scholar]
  • Nyström P., 1999. Ecological impact of introduced and native crayfish on freshwater communities: European perspectives. In: Gherardi F. and Holdich D.M. (eds.), Crayfish in Europe as alien species. How to make the best of a bad situation? A.A. Balkema, Rotterdam, Brookfield. [Google Scholar]
  • Nyström P., 2002. Ecology. In: Holdich D.M. (ed.), Biology of freshwater crayfish. Blackwell Science, Oxford, 192–235. [Google Scholar]
  • Nyström P., Svensson O., Lardner B., Brönmark C. andGranéli W., 2001. The influence of multiple introduced predators on a littoral pond community. Ecology, 82, 1023–1039. [CrossRef] [Google Scholar]
  • Oidtmann B., Cerenius L., Schmidt I., Hoffman R. andSöderhäll K., 1999. Crayfish plague epizootics in Germany – classification of two German isolates of the crayfish plague fungus by random amplification of polymorphic DNA. Dis. Aquat. Org., 35, 235–238. [CrossRef] [Google Scholar]
  • Padisák J., 1999. A Balaton természettörténete. História, 21, 50–53. [Google Scholar]
  • Patoka J., Kalous L. and Kopecký O., 2014. Risk assessment of the crayfish pet trade based on data from the Czech Repulic. Biol. Invasions, 16(12), 2489–2494. [Google Scholar]
  • Ponyi J. (ed.), 2002. A Hévízi forrástó ökológiai állapota: szimpóziumi és kiegészítõ anyagok. Nereus, Hévíz. [Google Scholar]
  • Puky M. andSchád P., 2006. Orconectes limosus colonises new areas fast along the Danube in Hungary. Bull. Fr. Pêche Piscic., 380–381, 919–926. [Google Scholar]
  • Puky M., Reynolds J.D. andSchád P., 2005. Native and alien Decapoda in Hungary: distribution, status, conservation importance. Bull. Fr. Pêche Piscic., 376–377, 553–568. [CrossRef] [EDP Sciences] [Google Scholar]
  • Ramsar Convention Secretariat, 2015. The list of wetlands of international importance. Published 25 June 2015. Ramsar Convention Secretariat, Gland, Switzerland. http://www.ramsar.org [Google Scholar]
  • Reynolds J. and Souty-Grosset C., 2012. Management of Freshwater Biodiversity: Crayfish as Bioindicators. Cambridge University Press, New York. [Google Scholar]
  • Scholtz G., Braband A., Tolley L., Reiman A., Mittmann B., Lukhaup C., Steuerwald F. andVogt G., 2003. Parthenogenesis in an outsider crayfish. Nature, 421, 806. [CrossRef] [PubMed] [Google Scholar]
  • Schulz H., Gross H., Dümpelmann C. and Schulz R., 2009. Flusskrebse Deutschlands. In: Füreder L. (ed.), Flusskrebse: Biologie – Ökologie – Gefährdung. Veröffentlichungen des Naturmuseums Südtirol, Nr.6, Folio Verlag Bozen/Wien. [Google Scholar]
  • Seitz R., Vilpoux K., Hopp U., Harzsch S. andMaier G., 2005. Ontogeny of the Marmorkrebs (Marbled crayfish): a parthenogenetic crayfish with unknown origin and phylogenetic position. J. Exp. Zool., 303A, 393–405. [Google Scholar]
  • Specziár A., 2004. Life history pattern and feeding ecology of the introduced eastern mosquitofish, Gambusia holbrooki, in a thermal spa under temperate climate, of Lake Hévíz, Hungary. Hydrobiologia, 522, 249–260. [CrossRef] [Google Scholar]
  • Szabó I., 1998. Termofitonok Hévíz és Keszthely meleg vizeiben. Kitaibelia, 3, 295–297. [Google Scholar]
  • Szabó I., 2002. Melegvízi növényfajok Hévíz és Keszthely vizeiben. Botanikai Közlemények, 89, 105–115. [Google Scholar]
  • Thompson J.D., Higgins D.G. andGibson T.J., 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position–specific gap penalties and weight matrix choice. Nucleic Acids Res., 22, 4673–4680. [CrossRef] [PubMed] [Google Scholar]
  • Thuránszky M. andForró L., 1987. Data on the distribution of freshwater crayfish (Decapoda: Astacidae) in Hungary in the late 1950s. Misc. Zool. Hung., 4, 65–69. [Google Scholar]
  • van der Wal J.E.M., Dorenbosch M., Immers A.K., Vidal Forteza C., Geurts J.J.M., Peeters E.T.H.M., Koese B. andBakker E.S., 2013. Invasive crayfish threaten the development of submerged macrophytes in lake restoration. PLoS One, 8, e78579. [CrossRef] [PubMed] [Google Scholar]
  • Veselý L., Buric M. and Kouba A., 2015. Hardy exotics species in temperate zone: can “warm water” crayfish invaders establish regardless of low temperatures? Sci. Rep., 5, 16340. [Google Scholar]
  • Vogt G., Huber M., Thiemann M., van den Boogaart G., Schmitz O.J. andSchubart C.D., 2008. Production of different phenotypes from the same genotype in the same environment by developmental variation. J. Exp. Biol., 211, 510–523. [CrossRef] [PubMed] [Google Scholar]
  • Vörös L., Mózes A. andSomogyi B., 2009. A five–year study of autotrophic winter picoplankton in Lake Balaton, Hungary. Aquat. Ecol., 43, 727–734. [CrossRef] [Google Scholar]
  • Weiperth A., Csányi B., Gál B., György Á.I., Szalóky Z., Szekeres J., Tóth B. andPuky M., 2015. Exotic crayfish, fish and amphibian species in various water bodies in the region of Budapest. Pisces Hungarici, 9, 65–70. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.