Knowl. Manag. Aquat. Ecosyst.
Number 417, 2016
Topical issue on Crayfish
Article Number 16
Number of page(s) 9
Published online 03 May 2016
  • Bíró P., 1997. Temporal variation in Lake Balaton and its fish populations. Ecol. Freshw. Fish., 6, 196–216. [CrossRef]
  • Braband A., Kawai T. andScholtz G., 2007. The phylogenetic position of the East Asian freshwater crayfish Cambaroides within the Northern Hemisphere Astacoidea (Crustacea, Decapoda, Astacida) based on molecular data. J. Zool. Syst. Evol. Res., 44, 17–24. [CrossRef]
  • Carpenter S.R. andLodge D.M., 1986. Effects of submersed macrophytes on ecosystem processes. Aquat. Bot., 26, 341–370. [CrossRef] [EDP Sciences]
  • Chucholl C., 2013. Invaders for sale: trade and determinants of introduction of ornamental freshwater crayfish. Biol. Invasions, 15, 125–141. [CrossRef]
  • Chucholl C., 2014. Predicting the risk of introduction and establishment of an exotic aquarium animal in Europe: insights from one decade of Marmorkrebs (Crustacea, Astacida, Cambaridae) releases. Manag. Biol. Invasion., 5, 309–318. [CrossRef]
  • Faulkes Z., 2010. The spread of the parthenogenetic marbled crayfish, Marmorkrebs (Procambarus sp.), in the North American pet trade. Aquat. Invasions, 5, 447–450. [CrossRef]
  • Feminella J.W. andResh V.H., 1989. Submersed macrophytes and grazing crayfish: an experimental study of herbivory in a California freshwater marsh. Holarct. Ecol., 12, 1–8.
  • Feria T.P. andFaulkes Z., 2011. Forecasting the distribution of Marmorkrebs, a parthenogenetic crayfish with high invasive potential, in Madagascar, Europe, and North America. Aquat. Invasions, 6, 55–67. [CrossRef]
  • Folmer O., Black M., Hoeh W., Lutz R. andVrijenhoek R., 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol., 3, 294–299. [PubMed]
  • Freeman M.A., Turnbull J.F., Yeomans W.E. andBean C.W., 2010. Prospects for management strategies of invasive crayfish populations with an emphasis on biological control. Aquat. Conserv., 20, 211–223. [CrossRef]
  • Government of Hungary, 2004. 275/2004. (X. 8.) Kormányrendelet az európai közösségi jelentőségű természetvédelmi rendeltetésű területekröl. Magyar Közlöny, 143, 11756–11817.
  • Hall T.A., 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser., 41, 95-98.
  • Harka Á. and Sallai Z., 2004. Magyarország halfaunája. Képes határozó és elterjedési tájékoztató. Nimfea Természetvédelmi Egyesület, Szarvas, 269 p.
  • Harka Á., Nyeste K., Nagy L. andErös T., 2014. Jewel cichlids (Hemichromis guttatus Günther, 1862) in thermal water of Lake Hévíz (Western Hungary). Pisces Hungarici, 8, 29–34.
  • Hebert P.D.N., Cywinska A., Ball S.L. and de Waard J.R., 2003. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. B Biol. Sci., 270, 313–321. [CrossRef]
  • Hobbs H.H., Jr., 1989. An illustrated checklist of the american crayfishes (Decapoda: Astacidae, Cambaridae, and Parastacidae). Smithsonian Institution Press, Washington, D.C., 236 p.
  • Holdich D.M., 2002. Distribution of crayfish in Europe and some adjoining countries. Bull. Fr. Pêche Piscic., 367, 611–650. [CrossRef] [EDP Sciences]
  • Holdich D.M., Reynolds J.D., Souty–Grosset C. andSibley P.J., 2009. A review of the ever increasing threat to European crayfish from non-indigenous crayfish species. Knowl. Manag. Aquat. Ecosyst., 394-395, 11. [CrossRef] [EDP Sciences]
  • Illés P., 2002. A jelzőrák (Pacifastacus leniusculus) előfordulása Magyarországon. Cinege – Vasi Madártani Tájékoztató, 7, 39–41.
  • Jones J.P.G., Rasamy J.R., Harvey A., Toon A., Oidtmann B., Randrianarison M.H., Raminosoa N. andRavoahangimalala O.R., 2009. The perfect invader: a parthenogenic crayfish poses a new threat to Madagascar’s freshwater biodiversity. Biol. Invasions, 11, 1475–1482. [CrossRef]
  • Kaldre K., Meženin A., Paaver T. and Kawai T., 2016. A preliminary study on the tolerance of marble crayfish Procambarus fallax f. virginalis to low temperature in nordic climate. In: Kawai T., Faukles Z. and Scholtz G. (eds.), Freshwater Crayfish: A Global Overview. Boca Raton: CRC Press.
  • Kawai T., Scholtz G., Morioka S., Ramanamandimby F., Lukhaup C. andHanamura Y., 2009. Parthenogenetic alien crayfish (Decapoda: Cambaridae) spreading in Madagascar. J. Crust. Biol., 29, 562–567. [CrossRef]
  • Keller N.S., Pfeiffer M., Roessink I., Schulz R. andSchrimpf A., 2014. First evidence of crayfish plague agent in populations of the marbled crayfish (Procambarus fallax forma virginalis). Knowl. Manag. Aquat. Ecosyst., 414, 15. [CrossRef] [EDP Sciences]
  • Kouba A., Petrusek A. andKozák P., 2014. Continental-wide distribution of crayfish species in Europe: update and maps. Knowl. Manag. Aquat. Ecosyst., 413, 05. [CrossRef] [EDP Sciences]
  • Kovács T., Juhász P. andAmbrus A., 2005. Adatok a Magyarországon élõ folyami rákok (Decapoda: Astacidae, Cambaridae) elterjedéséhez. Folia Historico Naturalia Musei Matraensis, 29, 85–89.
  • Lipták B. and Vitázková B., 2015. Beautiful, but also potentially invasive. Ekológia (Bratislava), 34, 2, 155–162.
  • Lukhaup C., 2001. Procambarus sp. – Der Marmorkrebs. Aquaristik Aktuell, 7-8, 48–51.
  • Marten M., Werth C. andMarten D., 2004. Der Marmorkrebs (Cambaridae, Decapoda) in Deutschland – ein weiteres Neozoon im Einzugsgebiet des Rheins. Lauterbornia, 50, 17–23.
  • Martin P., Kohlmann K. andScholtz G., 2007. The parthenogenetic Marmorkrebs (marbled crayfish) produces genetically uniform offspring. Naturwissenschaften, 94, 843–846. [CrossRef] [PubMed]
  • Martin P., Dorn N.J., Kawai T., van der Heiden C. andScholtz G., 2010. The enigmatic Marmorkrebs (marbled crayfish) is the parthenogenetic form of Procambarus fallax (Hagen, 1870). Contrib. Zool., 79, 107–118.
  • Martin P., Thonagel S. and Scholtz G., 2016. The parthenogenetic Marmorkrebs (Malacostraca: Decapoda: Cambaridae) is a triploid organism. J. Zoolog. Syst. Evol. Res., 54, 1, 13–21. [CrossRef]
  • Moorhouse T.P., Poole A.E., Evans L.C., Bradley D.C. andMacdonald D.W., 2014. Intensive removal of signal crayfish (Pacifastacus leniusculus) from rivers increases numbers and taxon richness of macroinvertebrate species. Ecol. Evol., 4, 494–504. [CrossRef] [PubMed]
  • Nyström P., 1999. Ecological impact of introduced and native crayfish on freshwater communities: European perspectives. In: Gherardi F. and Holdich D.M. (eds.), Crayfish in Europe as alien species. How to make the best of a bad situation? A.A. Balkema, Rotterdam, Brookfield.
  • Nyström P., 2002. Ecology. In: Holdich D.M. (ed.), Biology of freshwater crayfish. Blackwell Science, Oxford, 192–235.
  • Nyström P., Svensson O., Lardner B., Brönmark C. andGranéli W., 2001. The influence of multiple introduced predators on a littoral pond community. Ecology, 82, 1023–1039. [CrossRef]
  • Oidtmann B., Cerenius L., Schmidt I., Hoffman R. andSöderhäll K., 1999. Crayfish plague epizootics in Germany – classification of two German isolates of the crayfish plague fungus by random amplification of polymorphic DNA. Dis. Aquat. Org., 35, 235–238. [CrossRef]
  • Padisák J., 1999. A Balaton természettörténete. História, 21, 50–53.
  • Patoka J., Kalous L. and Kopecký O., 2014. Risk assessment of the crayfish pet trade based on data from the Czech Repulic. Biol. Invasions, 16(12), 2489–2494. [CrossRef]
  • Ponyi J. (ed.), 2002. A Hévízi forrástó ökológiai állapota: szimpóziumi és kiegészítõ anyagok. Nereus, Hévíz.
  • Puky M. andSchád P., 2006. Orconectes limosus colonises new areas fast along the Danube in Hungary. Bull. Fr. Pêche Piscic., 380–381, 919–926. [CrossRef] [EDP Sciences]
  • Puky M., Reynolds J.D. andSchád P., 2005. Native and alien Decapoda in Hungary: distribution, status, conservation importance. Bull. Fr. Pêche Piscic., 376–377, 553–568. [CrossRef] [EDP Sciences]
  • Ramsar Convention Secretariat, 2015. The list of wetlands of international importance. Published 25 June 2015. Ramsar Convention Secretariat, Gland, Switzerland.
  • Reynolds J. and Souty-Grosset C., 2012. Management of Freshwater Biodiversity: Crayfish as Bioindicators. Cambridge University Press, New York.
  • Scholtz G., Braband A., Tolley L., Reiman A., Mittmann B., Lukhaup C., Steuerwald F. andVogt G., 2003. Parthenogenesis in an outsider crayfish. Nature, 421, 806. [CrossRef] [PubMed]
  • Schulz H., Gross H., Dümpelmann C. and Schulz R., 2009. Flusskrebse Deutschlands. In: Füreder L. (ed.), Flusskrebse: Biologie – Ökologie – Gefährdung. Veröffentlichungen des Naturmuseums Südtirol, Nr.6, Folio Verlag Bozen/Wien.
  • Seitz R., Vilpoux K., Hopp U., Harzsch S. andMaier G., 2005. Ontogeny of the Marmorkrebs (Marbled crayfish): a parthenogenetic crayfish with unknown origin and phylogenetic position. J. Exp. Zool., 303A, 393–405. [CrossRef] [PubMed]
  • Specziár A., 2004. Life history pattern and feeding ecology of the introduced eastern mosquitofish, Gambusia holbrooki, in a thermal spa under temperate climate, of Lake Hévíz, Hungary. Hydrobiologia, 522, 249–260. [CrossRef]
  • Szabó I., 1998. Termofitonok Hévíz és Keszthely meleg vizeiben. Kitaibelia, 3, 295–297.
  • Szabó I., 2002. Melegvízi növényfajok Hévíz és Keszthely vizeiben. Botanikai Közlemények, 89, 105–115.
  • Thompson J.D., Higgins D.G. andGibson T.J., 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position–specific gap penalties and weight matrix choice. Nucleic Acids Res., 22, 4673–4680. [CrossRef] [PubMed]
  • Thuránszky M. andForró L., 1987. Data on the distribution of freshwater crayfish (Decapoda: Astacidae) in Hungary in the late 1950s. Misc. Zool. Hung., 4, 65–69.
  • van der Wal J.E.M., Dorenbosch M., Immers A.K., Vidal Forteza C., Geurts J.J.M., Peeters E.T.H.M., Koese B. andBakker E.S., 2013. Invasive crayfish threaten the development of submerged macrophytes in lake restoration. PLoS One, 8, e78579. [CrossRef] [PubMed]
  • Veselý L., Buric M. and Kouba A., 2015. Hardy exotics species in temperate zone: can “warm water” crayfish invaders establish regardless of low temperatures? Sci. Rep., 5, 16340. [CrossRef] [MathSciNet] [PubMed]
  • Vogt G., Huber M., Thiemann M., van den Boogaart G., Schmitz O.J. andSchubart C.D., 2008. Production of different phenotypes from the same genotype in the same environment by developmental variation. J. Exp. Biol., 211, 510–523. [CrossRef] [PubMed]
  • Vörös L., Mózes A. andSomogyi B., 2009. A five–year study of autotrophic winter picoplankton in Lake Balaton, Hungary. Aquat. Ecol., 43, 727–734. [CrossRef]
  • Weiperth A., Csányi B., Gál B., György Á.I., Szalóky Z., Szekeres J., Tóth B. andPuky M., 2015. Exotic crayfish, fish and amphibian species in various water bodies in the region of Budapest. Pisces Hungarici, 9, 65–70.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.