Open Access
Issue
Knowl. Manag. Aquat. Ecosyst.
Number 417, 2016
Article Number 14
Number of page(s) 12
DOI https://doi.org/10.1051/kmae/2016001
Published online 30 March 2016
  • Adhikari S., Bajracharaya R.M. andSitaula B.K., 2009. A review of carbon dynamics and sequestration in wetlands. J. Wetl. Ecol., 2, 42–46. [Google Scholar]
  • Aerts R., 1997. Climate, leaf chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos, 79, 439–449. [CrossRef] [Google Scholar]
  • Ágoston-Szabó E., Dinka M., Némedi L. andHorvát G., 2006. Decomposition of Phragmites australis rhizome in a shallow lake. Aquat. Bot., 85, 309–316. [CrossRef] [Google Scholar]
  • APHA, AWWA, WEF, 1998. Standard Methods for the Examination of Water and Wastewater, 20th edition. American Public Health Association, Washington, DC, 4–112/4–114. [Google Scholar]
  • Armstrong F.A.J., 1963. Determination of Nitrate in Water by Ultraviolet Spectrophotometry. Anal. Chem., 35, 1292–1294. [CrossRef] [Google Scholar]
  • Asaeda T., Nam L.H., Hietz P., Tanaka N. and Karunaratne S., 2002. Seasonal fluctuations in live and dead biomass of Phragmites australis as described by a growth and decomposition model: implications of duration of aerobic conditions for litter mineralization and sedimentation. Aquat. Bot., 73, 223–239. [CrossRef] [Google Scholar]
  • Bärlocher F., 1991. Fungal colonization of fresh and dry alder leaves in the River Teign. Nova Hedwig., 52, 349–357. [Google Scholar]
  • Bärlocher F., 1992. Effects of drying and freezing autumn leaves on leaching and colonization by aquatic hypomycetes. Freshw. Biol., 28, 1–7. [CrossRef] [Google Scholar]
  • Bärlocher F., 1997. Pitfalls of Traditional Techniques When Studying Decomposition of Vascular Plant Remains in Aquatic Habitats. Limnetica, 13, 1–11. [Google Scholar]
  • Bärlocher F., 2005. Leaf mass loss estimated by litter bag technique. In: Graça M.A.S., Bärlocher F. and Gessner M. (eds.), Methods to study litter decomposition: A practical guide. Springer, Dordrecht, 37–42. [Google Scholar]
  • Bärlocher F. andCorkum M., 2003. Nutrient enrichment overwhelms diversity effects in leaf decomposition by stream fungi. Oikos, 101, 247–252. [CrossRef] [Google Scholar]
  • Basset A., Sangiorgio F. and Sabetta L., 2006. Handbook for the application of body size descriptors to monitoring safety of transitional ecosystems. TW ReferenceNet – EU INTERREG III B Project 3B073. Management and sustainable development of protected transitional waters, University of Lecce, Lecce, 74 p. [Google Scholar]
  • Bayo M.M., Casas J.J. andCruz-Pizarro L., 2005. Decomposition of submerged Phragmites australis leaf litter in two highly eutrophic Mediterranean coastal lagoons: relative contribution of microbial respiration and macroinvertebrate feeding. Arch. Hydrobiol., 163, 349–367. [CrossRef] [Google Scholar]
  • Bedford P., 2005. Decomposition of Phragmites australis litter in seasonally flooded and exposed areas of a managed reedbed. Wetlands, 25, 713–720. [CrossRef] [Google Scholar]
  • Bedford A.P. andPowell I., 2005. Long-term changes in the invertebrates associated with the litter of Phragmites australis in a managed reedbed. Hydrobiologia, 549, 267–285. [CrossRef] [Google Scholar]
  • Bertoli M., Brichese G., Michielin D., Ruzič M., Vignes F., Basset A. andPizzul E., 2015. Seasonal dynamics of macrozoobenthic community in the wetland of the Natural Regional Reserve of the Isonzo River Mouth, Northeast Italy: a three-years analysis. Ann. Ser. Hist. Nat., 25, 55–66. [Google Scholar]
  • Bolleter T., Bushman C.J., Tidwell P.W., 1961. Spectrophotometric Determination of Ammonia as Indophenol. Anal. Chem., 33, 592–594 [CrossRef] [Google Scholar]
  • Bunn S.E., Davies P.M. andMosisch T.D., 1999. Ecosystem measures of river health and their response to riparian and catchment degradation. Freshw. Biol., 41, 333–345. [CrossRef] [Google Scholar]
  • Canhoto C. andGraça M.A.S., 1996. Decomposition of Eucalyptus globulus leaves and three native leaf species (Alnus glutinosa, Castanea sativa and Quercus faginea) in a Portuguese low order stream. Hydrobiologia, 333, 79–85. [CrossRef] [Google Scholar]
  • Carpenter S.R. andAdams M.S., 1979. Effects of nutrients and temperature on decomposition of Myriophyllum spicatum L. in a hard-water lake. Limnol. Oceanogr., 24, 520–528. [CrossRef] [Google Scholar]
  • Chauvet E., 1997. Leaf litter decomposition in large rivers: the case of the River Garonne. Limnetica, 13, 65–70. [Google Scholar]
  • Cochran W.G., 1941. The distribution of the largest of a set of estimated variances as a fraction of their total. Ann. Eugen., 11, 47–52. [CrossRef] [Google Scholar]
  • Cowie N.R., Sutherland W.J., Ditlhogo M.O.M. andJames R., 1992. The effects of conservation management of reed beds. II. The flora and litter disappearance. J. Appl. Ecol., 29, 277–284. [CrossRef] [Google Scholar]
  • Denward C.M.T andTranvik L.J., 1998. Effects of solar radiation on aquatic macrophyte litter decomposition. Oikos, 82, 51–58. [CrossRef] [Google Scholar]
  • Diez J., Elosegi A., Chauvet E. andPozo J., 2002. Breakdown of wood in the Aguera stream. Freshw. Biol., 47, 2205–2215. [CrossRef] [Google Scholar]
  • Dixon A.B. andWood A.P., 2003. Wetland cultivation and hydrological management in Eastern Africa: matching community and hydrological needs through sustainable wetland use. Nat. Resour. Forum, 27, 117–129. [CrossRef] [Google Scholar]
  • Dudgeon D., 1982. An investigation of physical and biotic processing of two species of leaf litter in Tai Po Kau forest stream, New Territories, Hong Kong. Arch. Hydrobiol., 96, 1–32. [Google Scholar]
  • Eid E.M., Shaltout K.H. andAl-Sodany Y.M., 2014. Decomposition dynamics of Phragmites australis litter in Lake Burullus, Egypt. Plant Species Biol., 29, 47–56. [CrossRef] [Google Scholar]
  • Elwood J.W., Newbold J.D. andTrimble A.F., 1981. The limiting role of phosphorus in a woodland stream ecosystem: effects of P enrichment on leaf decomposition and primary producers. Ecology, 62, 146–158. [CrossRef] [Google Scholar]
  • Gessner M.O., 1991. Differences in processing dynamics of fresh and dried leaf litter in a stream ecosystem. Freshw. Biol., 26, 387–398. [CrossRef] [Google Scholar]
  • Gessner M.O., 2000. Breakdown and nutrient dynamics of submerged Phragmites shoots in the littoral zone of a temperate hardwater lake. Aquat. Bot., 66, 9–20. [CrossRef] [Google Scholar]
  • Gessner M.O. andChauvet E., 1994. Importance of stream microfungi in controlling breakdown rates of leaf litter. Ecology, 75, 1807–1817. [CrossRef] [Google Scholar]
  • Graça M.A.S., 2001. The role of invertebrates on leaf litter decomposition in streams – a review. Int. Rev. Hydrobiol., 86, 383–393. [Google Scholar]
  • Graça M.A.S. andPereira A.P., 1995. The degradation of pine needles in a Mediterranean stream. Arch. Hydrobiol., 134, 119–128. [Google Scholar]
  • Gupta M.K., Shrivastava P., Singhal P.K., 1996. Decomposition of young water hyacinth leaves in lake water. Hydrobiologia, 335, 33–41. [CrossRef] [Google Scholar]
  • Hammer Ø., Harper D.A.T. andRyan P.D., 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron., 4, 1-9. [Google Scholar]
  • Hanson B.J., Cummins K.W., Barnes J.R. andCarter M.V., 1984. Leaf litter processing in aquatic systems: a two variable model. Hydrobiologia, 111, 21–29. [CrossRef] [Google Scholar]
  • Hieber M. andGessner M.O., 2002. Contribution of stream detritivores, fungi, and bacteria to leaf breakdown based on biomass estimates. Ecology, 83, 1026–1038. [CrossRef] [Google Scholar]
  • Hietz P., 1992. Decomposition and nutrient dynamics of reed (Phragmites australis (Cav.) Trin. ex Steud.) litter in Lake Neusiedl Austria. Aquat. Bot., 43, 211–230. [CrossRef] [Google Scholar]
  • IRSA-CNR and APAT, 2003. Metodi Analitici per le Acque, I.G.E.R. s.r.l., Roma, 1153 p. [Google Scholar]
  • Kok C.J., Meesters H.W.G. andKempers A.J., 1990. Decomposition rate, chemical composition and nutrient recycling of Nymphaea alba L. floating leaf blade detritus as influenced by pH, alkalinity and aluminum in laboratory experiments. Aquat. Bot., 37, 215–227. [CrossRef] [Google Scholar]
  • Kominkova D., Kuehn K.A., Busing N., Steiner D. andGessner M.O., 2000. Microbial biomass, growth and respiration associated with submerged litter of Phragmites australis decomposing in a littoral reed stand of a large lake. Aquat. Microb. Ecol., 22, 271–282. [CrossRef] [Google Scholar]
  • Kuehn K.A. andSuberkropp K., 1998. Decomposition of standing litter of the freshwater emergent macrophyte Juncus effusus. Freshw. Biol., 40, 717–727. [CrossRef] [Google Scholar]
  • Kufel I. andKufel L., 1988. In situ decomposition of Phragmites australis Trin. ex Steudel and Typha angustifolia L. Ekol. Pol., 36, 459–470. [Google Scholar]
  • Mendelssohn I.A., Sorrell B.K., Brix H., Schierup H., Lorenzen B. andMaltby E., 1999. Controls on soil cellulose decomposition along a salinity gradient in a Phragmites australis wetland in Denmark. Aquat. Bot., 64, 381–398. [CrossRef] [Google Scholar]
  • Menéndez M., Martinez M., Hernàndez O., andComín F.A., 2001. Comparison of Leaf Decomposition in Two Mediterranean Rivers: a Large Eutrophic River and an Oligotrophic Stream (S Catalonia, NE Spain). Int. Rev. Hydrobiol., 86, 475–486. [CrossRef] [Google Scholar]
  • Menéndez M., Hernández O. andComín F.A., 2003. Seasonal comparisons of leaf processing rates in two Mediterranean rivers with different nutrient availability. Hydrobiologia, 495, 159–169. [CrossRef] [Google Scholar]
  • Menéndez M., Hernández O., Sanmartí N. andComín F.A., 2004. Variability of organic matter processing in a Mediterranean coastal lagoon. Int. Rev. Hydrobiol., 89, 476–483. [CrossRef] [Google Scholar]
  • Mereta S.T., Boets P., Bayih A.A., Malu A., Ephrem Z., Sisay A., Endale H., Yitbarek M., Jemal A., De Meester L. andGoethals P.L.M., 2012. Analysis of environmental factors determining the abundance and diversity of macroinvertebrate taxa in natural wetlands of Southwest Ethiopia. Ecol. Inform., 7, 52–61. [CrossRef] [Google Scholar]
  • Muhammad S., Muller T. and Joergensen, R.G., 2006. Decomposition of pea and maize straw in Pakistani soils along a gradient in salinity. Biol. Fertil. Soils, 43, 93–101. [CrossRef] [Google Scholar]
  • Murphy K.L, Klopatek J.M andKlopatek C.C., 1998. The effects of litter quality and climate on decomposition along an elevational gradient. Ecol. Appl., 8, 1061–1071. [CrossRef] [Google Scholar]
  • Newell S.Y., 1996. Established and potential impacts of eukaryotic mycelial decomposers in marine/terrestrial ecotones. J. Exp. Mar. Biol. Ecol., 200, 187–206. [CrossRef] [Google Scholar]
  • Olson J.S., 1963. Energy storage and the balance of producers and decomposers in ecological systems. Ecology, 44, 322–331. [CrossRef] [Google Scholar]
  • Perco F., Merluzzi P. and Kravos K., 2006. The mouth of the Isonzo and Cona Island, Edizioni della Laguna, Mariano del Friuli (GO), 145 p. [Google Scholar]
  • Petersen R.C. and Cummins K.W., 1974. Leaf processing in a woodland stream. Freshw. Biol., 4, 343–368. [Google Scholar]
  • Pinna M., Sangiorgio F., Fonnesu A. andBasset A., 2003. Spatial analysis of plant detritus processing in a Mediterranean River type: the case of the River Tirso Basin, Sardinia, Italy. J. Environ. Sci., 15, 227–240. [Google Scholar]
  • Pinna M., Fonnesu A., Sangiorgio F. andBasset A., 2004. Influence of summer drought on spatial patterns of resource availability and detritus processing in Mediterranean stream sub-basins (Sardinia, Italy). Int. Rev. Hydrobiol., 89, 484–499. [CrossRef] [Google Scholar]
  • Pizzul E., Guiotto S. andMoro G.A., 2008. Osservazioni sulle comunità macrozoobentoniche dell’Isola della Cona (Friuli Venezia Giulia, Nordest Italia). Ann. Ser. Hist. Nat., 18, 79–90. [Google Scholar]
  • Presley B.J., 1971. Techniques for analyzing interstitial water samples, part I: determination of selected minor and major inorganic constituents. In: Winterer E.L., Riedel W.R., Brönnimann P., Gealy E., Heath G., Kroenke L., Martini E., Moberly R. Jr., Resig J. and Worsley T. (eds.), Initial Reports of the Deep Sea Drilling Project. U.S. Government Printing Office, Washington D.C., Vol. 7, pp. 1749–1755. [Google Scholar]
  • Quintino V., Sangiorgio F., Ricardo F., Mamede R., Pires A., Freitas R., Rodrigues A.M. andBasset A., 2009. In situ experimental study of reed leaf decomposition along a full salinity gradient. Estuar. Coast. Shelf Sci., 85, 497–506. [CrossRef] [Google Scholar]
  • Reice S.R. andHerbst G., 1982. The role of salinity in decomposition of leaves of Phragmites australis in desert streams. J. Arid Environ., 5, 361–368. [Google Scholar]
  • Rietz D.N. andHaynes R.J., 2003. Effects of irrigation-induced salinity and sodicity on soil microbial activity. Soil Biol. Biochem., 35, 845–854. [CrossRef] [Google Scholar]
  • Rolon A.S. andMaltchik L., 2006. Environmental factors as predictors of aquatic macrophyte richness and composition in wetlands of southern Brazil. Hydrobiologia, 556, 221–231. [CrossRef] [Google Scholar]
  • Rossi L. andCostantini M.L., 2000. Mapping the intra-habitat variation of leaf mass loss rate in a brackish Mediterranean lake. Mar. Ecol. Prog. Ser., 203, 145–159. [CrossRef] [Google Scholar]
  • Ruzič M., Bertoli M., Pizzul E., Vignes F. andBasset A., 2013. Macrozoobenthic communities in the Regional Natural Reserve of Isonzo River Mouth (Northeast Italy): first results of a leaf bag technique study. Ann. Ser. Hist. Nat., 23, 7–16. [Google Scholar]
  • Sangiorgio F., Pinna M. andBasset A., 2004. Inter- and intrahabitat variability of plant detritus decomposition in a transitional environment (Lake Alimini, Adriatic Sea). Chem. Ecol., 20, 353–366. [CrossRef] [Google Scholar]
  • Sangiorgio F., Fonnesu A., Pinna M., Sabetta L. andBasset A., 2006. Influence of drought and abiotic factors on Phragmites australis leaf decomposition in the River Pula, Sardinia, Italy. J. Freshw. Ecol., 21, 411–420. [CrossRef] [Google Scholar]
  • Sangiorgio F., Basset A., Pinna M., Sabetta L., Abbiati M., Ponti M., Minocci M., Orfanidis S., Nicolaiou A., Moncheva S., Trayanova A., Georgescu L., Dragan S., Beqiraj S., Koutsoubas D., Evagelopoulos A. andReizopoulou S., 2008a. Environmental factors affecting Phragmites australis litter decomposition in Mediterranean and Black Sea transitional waters. Aquat. Conserv. Mar. Freshw. Ecosyst., 18, 16–26. [CrossRef] [Google Scholar]
  • Sangiorgio F., Dragan S., Rosati I., Teodorof L., Staras M., Georgescu L. and Basset A., 2008b. Decomposition of reed swamp detritus in the Danube Delta: a case study of four eutrophic systems. Transit. Waters Bull., 26–37. [Google Scholar]
  • Sardinha M., Müller T., Schmeisky H. andJoergensen R.G., 2003. Microbial performance in soils along a salinity gradient under acidic conditions. Appl. Soil Ecol., 23, 237–244. [CrossRef] [Google Scholar]
  • Sharma K.P. and Gopal B., 1982. Decomposition and nutrient dynamics in Typha elephantine Roxb. under different water regimes. In: Gopal B., Turner R.E., Wetzel R.G. and Whigham D.F. (eds.), Wetlands Ecology and Management. National Institute of Ecology and International Sciences Publishers, Jaipur, 321–335. [Google Scholar]
  • Solórzano L., 1969. Determination of ammonia in natural waters by the phenolhypochlorite method. Limnol. Oceanogr., 14, 799–801. [CrossRef] [Google Scholar]
  • StatSoft Italia srl, 2005. STATISTICA (sistema software di analisi dei dati), versione 7.1. www.statsoft.it. [Google Scholar]
  • Stoch F., 1995. Indagine ecologico faunistica sui popolamenti ad entomostraci di alcuni stagni di acqua salmastra dell’Isola della Cona (foce del Fiume Isonzo, Italia nordorientale). Gortania, Atti Mus. Friul. St. Nat. Udine, 16, 151–173. [Google Scholar]
  • Street M., 1982. The use of waste straw to promote the production of invertebrate foods for waterfowl in manmade wetlands. In: Scott D.A. (ed.), Managing wetlands and their birds, Proceedings of the Third Technical Meeting on Western Palearctic Migratory Bird Management. International Waterfowl Research Bureau, Slimbridge, 98–103. [Google Scholar]
  • Strickland J.D.H. and Parsons T.R., 1972. A practical handbook of seawater analysis. Fishery Research Board, Canada, 310 p. [Google Scholar]
  • Thompson P.L. andBärlocher F., 1989. Effect of pH on leaf breakdown in streams and in the laboratory. J. N. Am. Benthol. Soc., 8, 203–210. [CrossRef] [Google Scholar]
  • van Bruggen A.H.C. andSemenov A.M., 2000. In search of biological indicators for soil health and disease suppression. Appl. Soil Ecol., 15, 13–24. [CrossRef] [Google Scholar]
  • van Dokkum H.P., Slijkerman D.M.E., Rossi L. andCostantini M.L., 2002. Variation in the decomposition of Phragmites australis in a monomictic lake: the role of gammarids. Hydrobiologia, 482, 69–77. [CrossRef] [Google Scholar]
  • Vought L.B., Kullberg A. andPetersen R.C., 1998. Effect of riparian structure, temperature and channel morphometry on detritus processing in channelized and natural woodland streams in southern Sweden. Aquat. Conserv. Mar. Freshw. Ecosyst., 8, 273–285. [CrossRef] [Google Scholar]
  • Völlm C. andTannenberger F., 2014. Shallow inundation favours decomposition of Phragmites australis leaves in a near-natural temperate fen. Mires and Peat, 14, 1–9. [Google Scholar]
  • Wallace J.B., Eggert S.L., Meyer J.L. andWebster J.R., 1997. Multiple trophic levels for a forested stream linked to terrestrial litter inputs. Science, 277, 102–104. [CrossRef] [Google Scholar]
  • Webster J.R. andBenfield E.F., 1986. Vascular plant breakdown in freshwater ecosystems. Ann. Rev. Ecol. Syst., 17, 567–594. [Google Scholar]
  • Webster J.R., Wallace J.B. and Benfield E.F., 1995. Organic processes in streams of the eastern United States. In: Cushing C.E., Minshall G.W. and Cummins K.W. (eds.), Ecosystems of the World: v. 22. River and Stream Ecosystems. Elsevier, Amsterdam, 117–187. [Google Scholar]
  • Wichern J., Wichern F. andJoergensen R.G., 2006. Impact of salinity on soil microbial communities and the decomposition of maize in acidic soils. Geoderma, 137, 100–108. [CrossRef] [Google Scholar]
  • Wiggins G.B.R., Mackay J. andSmith I.M., 1980. Evolutionary and ecological strategies of animals in annual temporary pools. Arch. Hydrobiol., 58, 97–206. [Google Scholar]
  • Zar J.H., 1984. Biostatistical Analysis, 2nd edition. Prentice-Hall International Inc., New Jersey, 718 p. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.