Issue
Knowl. Manag. Aquat. Ecosyst.
Number 416, 2015
Topical Issue on Fish Ecology
Article Number 35
Number of page(s) 22
DOI https://doi.org/10.1051/kmae/2015033
Published online 22 December 2015
  • Armstrong J.D. and Hawkins L.A., 2008. Standard metabolic rate of pike, Esox lucius: variation among studies and implications for energy flow modelling. Hydrobiologia, 601, 83–90. [CrossRef] [Google Scholar]
  • Aubert M., Williams I.S., Boljkovac K., Moffat I., Moncel M.H., Dufour E. and Grun R., 2012. In situ oxygen isotope micro–analysis of faunal material and human teeth using a SHRIMP II: a new tool for palaeo–ecology and archaeology. J. Archaeol. Sci., 39, 3184–3194. [CrossRef] [Google Scholar]
  • Backiel T., 1986. Masking effect of variability of growth on its estimation in juvenile tench, Tinca tinca (L.), reared at different temperatures. Pol. Arch. Hydrobiol., 33, 69–95. [Google Scholar]
  • Bergman E. and Greenberg L.A., 1994. Competition between a planktivore, a benthivore and a species with ontogenetic diet shifts. Ecology, 75, 1233–1245. [CrossRef] [Google Scholar]
  • Bevelhimer M.S., Stein R.A. and Carline R.F., 1985. Assessing significance of physiological differences among 3 esocids with a bioenergetics model. Can. J. Fish. Aquat. Sci., 42, 57–69. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Broughton N.M. and Jones N.V., 1978. An investigation into the growth of O–group roach, (Rutilus rutilus L.) with special reference to temperature. J. Fish Biol., 12, 345–357. [CrossRef] [Google Scholar]
  • Bruslé J. and Quignard J.P., 2001. Biologie des poissons d’eau douce européens. Lavoisier, Paris. [Google Scholar]
  • Campana S.E., 1999. Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Mar. Ecol. Prog. Ser., 188, 263–297. [CrossRef] [Google Scholar]
  • Carpenter S.J., Erickson J.M. and Holland F.D., 2003. Migration of a Late Cretaceous fish. Nature, 423, 70–74. [CrossRef] [PubMed] [Google Scholar]
  • Casselman J.M., 1978. Effects of environmental factors on growth, survival, activity, and exploitation of northern pike. Am. Fish. Soc. Special Publication, 114–128. [Google Scholar]
  • Clarke A. and Johnston N.M., 1999. Scaling of metabolic rate with body mass and temperature in teleost fish. J. Anim. Ecol. 68, 893–905. [CrossRef] [Google Scholar]
  • Craig J., 1996. Pike: biology and exploitation. Chapman & Hall, 320 p. [Google Scholar]
  • Danis P.A., von Grafenstein U., Masson–Delmotte V., Planton S., Gerdeaux D. and Moisselin J.M., 2004. Vulnerability of two European lakes in response to future climatic changes. Geophys. Res. Lett., 31. [Google Scholar]
  • Degens E.T., Deuser W.G. and Haedrich R.L., 1969. Molecular structure and composition of fish otoliths. Mar. Biol., 2, 105–113. [CrossRef] [Google Scholar]
  • DeNiro M.J. and Epstein S., 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta, 42, 495–506. [CrossRef] [Google Scholar]
  • Dettman D.L. and Lohmann K.C., 1995. Microsampling carbonates for stable isotope and minor element analysis: Physical separation of samples on a 20 micrometer scale. J. Sediment. Res., 65, 566–569. [CrossRef] [Google Scholar]
  • Deutsch B. and Berth U., 2006. Differentiation of western and eastern Baltic Sea cod stocks (Gadus morhua) by means of stable isotope ratios in muscles and otoliths. J. Appl. Ichthyol., 22, 538–539. [CrossRef] [Google Scholar]
  • Dufour E., 1999. Implications paléoenvironnementales et paléoalimentaires des abondances isotopiques en carbone et azote des poissons téléostéens. Thèse de doctorat de l’Université Pierre et Marie Curie, 198 p. [Google Scholar]
  • Dufour E. and Gerdeaux D., 2001. Contribution of stable isotopes to fish ecological studies. Cybium, 25, 369–382. [Google Scholar]
  • Dufour E. and Gerdeaux D., 2007. Summer depth positioning of whitefish (Coregonus lavaretus) in Lake Annecy inferred from oxygen thermometry of otoliths. In: Jankun M., Brzuzan P., Hliwa P. and Luczynski M. (eds.), Biology and Management of Coregonid Fishes – 2005, 195–204. [Google Scholar]
  • Dufour E., Bocherens H., Gerdeaux D., Ruhlé C. and Mariotti A., 1998. Stable carbon and isotope approach to the distinction between Blaufelchen and Gangfish (Coregonus lavaretus) in lake Constance. Arch. hydrobiol. Spec. Isuues. Advanc. Limnol., 50, 121-129. [Google Scholar]
  • Dufour E., Cappetta H., Denis A., Dauphin Y. and Mariotti A., 2000. La diagenèse des otolithes par la comparaison des données microstructurales, minéralogiques et géochimiques : application aux fossiles du Pliocène du Sud-Est de la France. Bull. Soc. Géol. France, 171, 521-532. [CrossRef] [Google Scholar]
  • Dufour E., Gerdeaux D. and Wurster C.M., 2007. Whitefish (Coregonus lavaretus) respiration rate governs intra–otolith variation of δ13C values in Lake Annecy. Can. J. Fish. Aquat. Sci., 64, 1736–1746. [CrossRef] [Google Scholar]
  • Elsdon T.S., Ayvazian S., McMahon K.W. and Thorrold S.R., 2010. Experimental evaluation of stable isotope fractionation in fish muscle and otoliths. Mar. Ecol. Prog. Ser., 408, 195–205. [CrossRef] [Google Scholar]
  • Enders E.C., Boisclair D., Boily P. and Magnan P., 2006. Effect of body mass and water temperature on the standard metabolic rate of juvenile yellow perch, Perca flavescens (Mitchill). Environ. Biol. Fishes, 76, 399–407. [CrossRef] [Google Scholar]
  • France R.L.., 1995. Carbon-13 enrichment in benthic compared to planktonic algae: foodweb implications. Mar. Ecol. Prog. Ser., 124, 307-312. [CrossRef] [Google Scholar]
  • Geffen A.J., 2012. Otolith oxygen and carbon stable isotopes in wild and laboratory-reared plaice (Pleuronectes platessa). Environ. Biol. Fishes, 95, 419–430. [CrossRef] [Google Scholar]
  • Gerdeaux D. and Dufour E., 2012. Inferring occurrence of growth checks in pike (Esox lucius) scales by using sequential isotopic analysis of otoliths. Rapid Commun. Mass Spectrom., 26, 785–792. [CrossRef] [PubMed] [Google Scholar]
  • Gerdeaux D. and Perga M.E., 2006. Changes in whitefish scales delta C–13 during eutrophication and reoligotrophication of subalpine lakes. Limnol. Oceanogr., 51, 772–780. [CrossRef] [Google Scholar]
  • Gerdeaux D., Bergeret S., Fortin J. and Baronnet T., 2001. Diet and seasonal patterns of food intake by Coregonus lavaretus in Lake Annecy, comparison with the diet of the other species of the fish community. Arch. Hydrobiol. Spec. Issues Adv. Limnol., 57, 199–207. [Google Scholar]
  • Godiksen J., Svenning M.A., Dempson J.B., Marttila M., Storm–Suke A. and Power M., 2010. Development of a species-specific fractionation equation for Arctic charr (Salvelinus alpinus (L.)): an experimental approach. Hydrobiologia, 650, 67–77. [CrossRef] [Google Scholar]
  • Gronkjaer P., Pedersen J.B., Ankjaero T.T., Kjeldsen H., Heinemeier J., Steingrund P., Nielsen J.M. and Christensen J.T., 2013. Stable N and C isotopes in the organic matrix of fish otoliths: validation of a new approach for studying spatial and temporal changes in the trophic structure of aquatic ecosystems. Can. J. Fish. Aquat. Sci., 70, 143–146. [CrossRef] [Google Scholar]
  • Hanson N.N., Wurster C.M. and Todd C.D., 2010. Comparison of secondary ion mass spectrometry and micromilling/continuous flow isotope ratio mass spectrometry techniques used to acquire intra–otolith delta O–18 values of wild Atlantic salmon (Salmo salar). Rapid Commun. Mass Spectrom., 24, 2491–2498. [CrossRef] [PubMed] [Google Scholar]
  • Hoeinghaus D.J. and Zeug S.C., 2008. Can stable isotope ratios provide for community–wide measures of trophic structure? Comment. Ecology, 89, 2353–2357. [CrossRef] [PubMed] [Google Scholar]
  • Hoelker F., 2003. The metabolic rate of roach in relation to body size and temperature. J. Fish Biol., 62, 565–579. [CrossRef] [Google Scholar]
  • Hoie H., Andersson C., Folkvord A. and Karlsen O., 2004. Precision and accuracy of stable isotope signals in otoliths of pen–reared cod (Gadus morhua) when sampled with a high–resolution micromill. Marine Biology, 144, 1039–1049. [CrossRef] [Google Scholar]
  • Hokanson K.E.F., 1977. Temperature requirements of some percids and adaptations to seasonal temperature cycle. J. Fish Res. Board Can., 34, 1524–1550. [CrossRef] [Google Scholar]
  • Holeton G.F., 1973. Respiration of Arctic Char (Salvelinus alpinus) From a High Arctic Lake. J. Fish Res. Board Can., 30, 717–723. [CrossRef] [Google Scholar]
  • Horppila J., Ruuhijarvi J., Rask M., Karppinen C., Nyberg K. and Olin M., 2000. Seasonal changes in the diets and relative abundances of perch and roach in the littoral and pelagic zones of a large lake. J. Fish Biol., 56, 51–72. [CrossRef] [Google Scholar]
  • Huxham M., Kimani E., Newton J. and Augley J., 2007. Stable isotope records from otoliths as tracers of fish migration in a mangrove system. J. Fish Biol., 70, 1554–1567. [CrossRef] [Google Scholar]
  • Jamieson R.E., Schwarcz H.P. and Brattey J., 2004. Carbon isotopic records from the otoliths of Atlantic cod (Gadus morhua) from eastern Newfoundland, Canada. Fish Res., 68, 83–97. [CrossRef] [Google Scholar]
  • Janjua M.Y. and Gerdeaux D., 2011. Evaluation of food web and fish dietary niches in oligotrophic Lake Annecy by gut content and stable isotope analysis. Lakes Reserv. Manage., 27, 115–127. [CrossRef] [Google Scholar]
  • Jardine T.D., Kidd K.A. and O’Driscoll N., 2013. Food web analysis reveals effects of pH on mercury bioaccumulation at multiple trophic levels in streams. Aquat. Toxicol., 132, 46–52. [CrossRef] [PubMed] [Google Scholar]
  • Kahilainen K.K., Patterson W.P., Sonninen E., Harrod C. and Kiljunen M., 2014. Adaptive radiation along a thermal gradient: preliminary results of habitat use and respiration rate divergence among Whitefish morphs. Plos One, 9(11). [Google Scholar]
  • Kahl U. and Radke R.J., 2006. Habitat and food resource use of perch and roach in a deep mesotrophic reservoir: enough space to avoid competition? Ecol. Freshw. Fish, 15, 48–56. [CrossRef] [Google Scholar]
  • Kalish J.M., 1991. C–13 and O–18 isotopic disequilibria in fish otoliths – metabolic and kinetic effects. Mar. Ecol. Prog. Ser., 75, 191–203. [CrossRef] [Google Scholar]
  • Karas P., 1990. Seasonal changes in growth and standard metabolic–rate of juvenile perch, Perca fluviatilis L. J. Fish Biol., 37, 913–920. [CrossRef] [Google Scholar]
  • Keith P. and Allardi J., 2001. Atlas des poissons d’eau douce de France, Paris, 387 p. [Google Scholar]
  • Kim S.T., O’Neil J.R., Hillaire–Marcel C. and Mucci A., 2007. Oxygen isotope fractionation between synthetic aragonite and water: Influence of temperature and Mg2+ concentration. Geochim. Cosmochim. Acta, 71, 4704–4715. [CrossRef] [Google Scholar]
  • Klemetsen A., Amundsen P.A., Dempson J.B., Jonsson B., Jonsson N., O’Connell M.F. and Mortensen E., 2003. Atlantic salmon Salmo salar L., brown trout Salmo trutta L. and artic charr salvelinus alpinus (L.): a review of aspects of their life histories. Ecol. Freshw. Fish, 12, 1–59. [CrossRef] [Google Scholar]
  • Kline T.C., Wilson W.J. and Goering J.J., 1998. Natural isotope indicators of fish migration at Prudhoe Bay, Alaska. Can. J. Fish. Aquat. Sci., 55, 1494–1502. [CrossRef] [Google Scholar]
  • Madenjian C.P., O’Connor D.V., Pothoven S.A., Schneeberger P.J., Rediske R.R., O’Keefe J.P., Bergstedt R.A., Argyle R.L. and Brandt S.B., 2006. Evaluation of a lake whitefish bioenergetics model. T. Am. Fish Soc., 135, 61–75. [CrossRef] [Google Scholar]
  • McCauley R.W. and Casselman J.M., 1981. The final preferendum as an index of the temperature for optimum growth in fish. In: Tiews K. (ed.), World Symposium on Aquaculture in Heated Effluents and Recirculation Systems. Heenemann Verlagsgesellschaf, pp. 81–93. [Google Scholar]
  • McMahon K.W., Berumen M.L., Mateo I., Elsdon T.S. and Thorrold S.R., 2011. Carbon isotopes in otolith amino acids identify residency of juvenile snapper (Family: Lutjanidae) in coastal nurseries. Coral Reefs, 30, 1135–1145. [CrossRef] [Google Scholar]
  • McMahon K.W., Hamady L.L. and Thorrold S.R., 2013. A review of ecogeochemistry approaches to estimating movements of marine animals. Limnol. Oceanogr., 58, 697–714. [CrossRef] [Google Scholar]
  • Michener R. and Lajtha K., 2007. Stable isotopes in ecology and environmental science. 2nd edition. ISBN 978-1-4051-2680-9. Ecological Methods and Concepts Series. Blackwell Publishing, Malden, Massachusetts 02148-5020, 566 p. [Google Scholar]
  • Patterson W.P., Smith G.R. and Lohmann K.C., 1993. Continental paleothermometry and seasonality using the isotopic composition of aragonitic otoliths of freshwater fishes. In Continental Climate Change from Isotopic Records. In: Swart P.K., Lohmann K.C., McKenzie J., and Savin S. (ed.), Continental Climate Change from Isotopic Records., Washington, DC, 191–202. [Google Scholar]
  • Perga M.E. and Gerdeaux D., 2005. Are fish what they eat all year round? Oecologia, 144, 598–606. [CrossRef] [PubMed] [Google Scholar]
  • Persson L., 1986. Temperature-induced shift in foraging ability in 2 fish species, roach (Rutilus rutilus) and perch (Perca fluviatilis) – implications for coexistence between poïkilotherms. J. Anim. Ecol., 55, 829–839. [CrossRef] [Google Scholar]
  • Romanek C.S., Grossman E.L. and Morse J.W., 1992. Carbon isotopic fractionation in synthetic aragonite and calcite – Effects of temperature and precipitation rate. Geochim. Cosmochim. Ac., 56, 419–430. [CrossRef] [Google Scholar]
  • Rowell K., Flessa K.W., Dettman D.L. and Roman M., 2005. The importance of Colorado River flow to nursery habitats of the Gulf corvina (Cynoscion othonopterus). Can. J. Fish. Aquat. Sci., 62, 2874–2885. [CrossRef] [Google Scholar]
  • Sako A., MacLeod K.G. and O’Reilly C.M., 2007. Stable Oxygen and Carbon Isotopic Compositions of Lates stappersii Otoliths from Lake Tanganyika, East Africa J. Great Lakes Res. 33, 806–815. [CrossRef] [Google Scholar]
  • Schwarcz H.P., Gao Y., Campana S., Browne D., Knyf M. and Brand U., 1998a. Stable carbon isotope variations in otoliths of Atlantic cod (Gadus morhua). Can. J. Fish. Aquat. Sci., 55, 1798–1806. [CrossRef] [Google Scholar]
  • Schwarcz H.P., Simpson J.J. and Stringer C.B., 1998b. Neanderthal skeleton from Tabun: U–series data by gamma–ray spectrometry. J. Hum. Evol., 35, 635–645. [CrossRef] [PubMed] [Google Scholar]
  • Secor D.H., Dean J.M. and Laban E.H., 1991. Otolith removal and preparation for microstructural examination: A user manual. Baruch. Inst. [Google Scholar]
  • Sherwood G.D. and Rose G.A., 2003. Influence of swimming form on otolith delta C–13 in marine fish. Mar. Ecol. Prog. Ser., 258, 283–289. [CrossRef] [Google Scholar]
  • Solomon C.T., Weber P.K., Cech J.J., Ingram B.L., Conrad M.E., Macharam M.V., Pogodina A.R. and Franklin R.L., 2006. Experimental determination of the sources of otolith carbon and associated isotopic fractionation. Can. J. Fish. Aquat. Sci., 63, 79–89. [CrossRef] [Google Scholar]
  • Souchon Y. and Tissot L., 2012. Synthesis of thermal tolerances of the common freshwater fish species in large Western Europe rivers. Knowl. Manag. Aquat. Ecosyst., 405, 03. [CrossRef] [EDP Sciences] [Google Scholar]
  • Spötl C. and Vennemann T.W., 2003. Continuous-flow isotope ratio mass spectrometric analysis of carbonate minerals. Rapid Communications in Mass Spectrometry, 17, 1004-1006. [CrossRef] [Google Scholar]
  • Storm–Suke A., Dempson J.B., Reist J.D. and Power M., 2007. A field–derived oxygen isotope fractionation equation for Salvelinus species. Rapid Communications in Mass Spectrometry, 21, 4109–4116. [CrossRef] [Google Scholar]
  • Svanback R. and Eklov P., 2006. Genetic variation and phenotypic plasticity: causes of morphological and dietary variation in Eurasian perch. Evolutionary Ecology Research, 8, 37–49. [Google Scholar]
  • Svanback R., Eklov P., Fransson R. and Holmgren K., 2008. Intraspecific competition drives multiple species resource polymorphism in fish communities. Oikos, 117, 114–124. [CrossRef] [Google Scholar]
  • Svärdson G., 1976. Interspecific population dominance in fish communities of Scandinavian lakes. Institut of Freshwater Research Drottningholm, Sweden, 55, 144–171. [Google Scholar]
  • Thorrold S.R., Campana S.E., Jones C.N. and Swart P.K., 1997. Factors determining δ13C and δ18O fractionation in aragonitic otoliths of marine fish. Geochim. Cosmochim. Ac., 61, 2909–2919. [CrossRef] [Google Scholar]
  • Thorrold S.R., Latkoczy C., Swart P.K. and Jones C.M., 2001. Natal homing in a marine fish metapopulation. Science, 291, 297–299. [CrossRef] [PubMed] [Google Scholar]
  • Tohse H. and Mugiya Y., 2002. Diel variations in carbonate incorporation into otoliths in goldfish. J. Fish Biol., 61, 199–206. [CrossRef] [Google Scholar]
  • Van der Zanden M.J. and Rasmussen J.B., 2001. Variation in delta N–15 and delta C–13 trophic fractionation: Implications for aquatic food web studies. Limnol. Oceanogr., 46, 2061–2066. [CrossRef] [Google Scholar]
  • van Dijk P.L.M., Staaks G. and Hardewig I., 2002. The effect of fasting and refeeding on temperature preference, activity and growth of roach, Rutilus rutilus. Oecologia, 130, 496–504. [CrossRef] [PubMed] [Google Scholar]
  • Vasek M., Kubecka J., Cech M., Drastik V., Matena J., Mrkvicka T., Peterka J. and Prchalova M., 2009. Diel variation in gillnet catches and vertical distribution of pelagic fishes in a stratified European reservoir. Fish Res., 96, 64–69. [CrossRef] [Google Scholar]
  • Weidman C.R. and Miller R., 2000. High–resolution stable records from North Atlantic cod. Fish Res., 46, 327–342. [CrossRef] [Google Scholar]
  • Werner E.E. and Gilliam J.F., 1984. The ontogenic niche and species interactions in size–structured populations. Ann. Rev. Ecol. Syst., 15, 393–425. [CrossRef] [Google Scholar]
  • Winfield I.J., 1986. The influence of simulated aquatic macrophytes on the zooplankton consuption rate of juveniel roach, Rutilus rutilus, rudd, Scardinius erythrophthalmus, and perch, Perca fluviatilis. J. Fish Biol., 29, 37–48. [CrossRef] [Google Scholar]
  • Wurster C.M. and Patterson W.P., 2003. Metabolic rate of late holocene freshwater fish : evidence from δ13C values of otoliths. Paleobiology, 29, 492–505. [CrossRef] [Google Scholar]
  • Wurster C.M., Patterson W.P. and Cheatham M.M., 1999. Advances in micromilling techniques: A new apparatus for acquiring high–resolution oxygen and carbon stable isotope values and major/minor elemental ratios from accretionary carbonate. Comput. Geosci., 25, 1155–1162. [CrossRef] [Google Scholar]
  • Wurster C.M., Patterson W.P., Stewart D.J., Bowlby J.N. and Stewart T.J., 2005. Thermal histories, stress, and metabolic rates of chinook salmon (Oncorhynchus tshawytscha) in Lake Ontario: evidence from intra–otolith stable isotope analyses. Can. J. Fish. Aquat. Sci., 62, 700–713. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.