Knowl. Manag. Aquat. Ecosyst.
Number 416, 2015
Topical Issue on Fish Ecology
Article Number 35
Number of page(s) 22
Published online 22 December 2015
  • Armstrong J.D. and Hawkins L.A., 2008. Standard metabolic rate of pike, Esox lucius: variation among studies and implications for energy flow modelling. Hydrobiologia, 601, 83–90. [CrossRef]
  • Aubert M., Williams I.S., Boljkovac K., Moffat I., Moncel M.H., Dufour E. and Grun R., 2012. In situ oxygen isotope micro–analysis of faunal material and human teeth using a SHRIMP II: a new tool for palaeo–ecology and archaeology. J. Archaeol. Sci., 39, 3184–3194. [CrossRef]
  • Backiel T., 1986. Masking effect of variability of growth on its estimation in juvenile tench, Tinca tinca (L.), reared at different temperatures. Pol. Arch. Hydrobiol., 33, 69–95.
  • Bergman E. and Greenberg L.A., 1994. Competition between a planktivore, a benthivore and a species with ontogenetic diet shifts. Ecology, 75, 1233–1245. [CrossRef]
  • Bevelhimer M.S., Stein R.A. and Carline R.F., 1985. Assessing significance of physiological differences among 3 esocids with a bioenergetics model. Can. J. Fish. Aquat. Sci., 42, 57–69. [CrossRef] [MathSciNet] [PubMed]
  • Broughton N.M. and Jones N.V., 1978. An investigation into the growth of O–group roach, (Rutilus rutilus L.) with special reference to temperature. J. Fish Biol., 12, 345–357. [CrossRef]
  • Bruslé J. and Quignard J.P., 2001. Biologie des poissons d’eau douce européens. Lavoisier, Paris.
  • Campana S.E., 1999. Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Mar. Ecol. Prog. Ser., 188, 263–297. [CrossRef]
  • Carpenter S.J., Erickson J.M. and Holland F.D., 2003. Migration of a Late Cretaceous fish. Nature, 423, 70–74. [CrossRef] [PubMed]
  • Casselman J.M., 1978. Effects of environmental factors on growth, survival, activity, and exploitation of northern pike. Am. Fish. Soc. Special Publication, 114–128.
  • Clarke A. and Johnston N.M., 1999. Scaling of metabolic rate with body mass and temperature in teleost fish. J. Anim. Ecol. 68, 893–905. [CrossRef]
  • Craig J., 1996. Pike: biology and exploitation. Chapman & Hall, 320 p.
  • Danis P.A., von Grafenstein U., Masson–Delmotte V., Planton S., Gerdeaux D. and Moisselin J.M., 2004. Vulnerability of two European lakes in response to future climatic changes. Geophys. Res. Lett., 31.
  • Degens E.T., Deuser W.G. and Haedrich R.L., 1969. Molecular structure and composition of fish otoliths. Mar. Biol., 2, 105–113. [CrossRef]
  • DeNiro M.J. and Epstein S., 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta, 42, 495–506. [CrossRef]
  • Dettman D.L. and Lohmann K.C., 1995. Microsampling carbonates for stable isotope and minor element analysis: Physical separation of samples on a 20 micrometer scale. J. Sediment. Res., 65, 566–569. [CrossRef]
  • Deutsch B. and Berth U., 2006. Differentiation of western and eastern Baltic Sea cod stocks (Gadus morhua) by means of stable isotope ratios in muscles and otoliths. J. Appl. Ichthyol., 22, 538–539. [CrossRef]
  • Dufour E., 1999. Implications paléoenvironnementales et paléoalimentaires des abondances isotopiques en carbone et azote des poissons téléostéens. Thèse de doctorat de l’Université Pierre et Marie Curie, 198 p.
  • Dufour E. and Gerdeaux D., 2001. Contribution of stable isotopes to fish ecological studies. Cybium, 25, 369–382.
  • Dufour E. and Gerdeaux D., 2007. Summer depth positioning of whitefish (Coregonus lavaretus) in Lake Annecy inferred from oxygen thermometry of otoliths. In: Jankun M., Brzuzan P., Hliwa P. and Luczynski M. (eds.), Biology and Management of Coregonid Fishes – 2005, 195–204.
  • Dufour E., Bocherens H., Gerdeaux D., Ruhlé C. and Mariotti A., 1998. Stable carbon and isotope approach to the distinction between Blaufelchen and Gangfish (Coregonus lavaretus) in lake Constance. Arch. hydrobiol. Spec. Isuues. Advanc. Limnol., 50, 121-129.
  • Dufour E., Cappetta H., Denis A., Dauphin Y. and Mariotti A., 2000. La diagenèse des otolithes par la comparaison des données microstructurales, minéralogiques et géochimiques : application aux fossiles du Pliocène du Sud-Est de la France. Bull. Soc. Géol. France, 171, 521-532. [CrossRef]
  • Dufour E., Gerdeaux D. and Wurster C.M., 2007. Whitefish (Coregonus lavaretus) respiration rate governs intra–otolith variation of δ13C values in Lake Annecy. Can. J. Fish. Aquat. Sci., 64, 1736–1746. [CrossRef]
  • Elsdon T.S., Ayvazian S., McMahon K.W. and Thorrold S.R., 2010. Experimental evaluation of stable isotope fractionation in fish muscle and otoliths. Mar. Ecol. Prog. Ser., 408, 195–205. [CrossRef]
  • Enders E.C., Boisclair D., Boily P. and Magnan P., 2006. Effect of body mass and water temperature on the standard metabolic rate of juvenile yellow perch, Perca flavescens (Mitchill). Environ. Biol. Fishes, 76, 399–407. [CrossRef]
  • France R.L.., 1995. Carbon-13 enrichment in benthic compared to planktonic algae: foodweb implications. Mar. Ecol. Prog. Ser., 124, 307-312. [CrossRef]
  • Geffen A.J., 2012. Otolith oxygen and carbon stable isotopes in wild and laboratory-reared plaice (Pleuronectes platessa). Environ. Biol. Fishes, 95, 419–430. [CrossRef]
  • Gerdeaux D. and Dufour E., 2012. Inferring occurrence of growth checks in pike (Esox lucius) scales by using sequential isotopic analysis of otoliths. Rapid Commun. Mass Spectrom., 26, 785–792. [CrossRef] [PubMed]
  • Gerdeaux D. and Perga M.E., 2006. Changes in whitefish scales delta C–13 during eutrophication and reoligotrophication of subalpine lakes. Limnol. Oceanogr., 51, 772–780. [CrossRef]
  • Gerdeaux D., Bergeret S., Fortin J. and Baronnet T., 2001. Diet and seasonal patterns of food intake by Coregonus lavaretus in Lake Annecy, comparison with the diet of the other species of the fish community. Arch. Hydrobiol. Spec. Issues Adv. Limnol., 57, 199–207.
  • Godiksen J., Svenning M.A., Dempson J.B., Marttila M., Storm–Suke A. and Power M., 2010. Development of a species-specific fractionation equation for Arctic charr (Salvelinus alpinus (L.)): an experimental approach. Hydrobiologia, 650, 67–77. [CrossRef]
  • Gronkjaer P., Pedersen J.B., Ankjaero T.T., Kjeldsen H., Heinemeier J., Steingrund P., Nielsen J.M. and Christensen J.T., 2013. Stable N and C isotopes in the organic matrix of fish otoliths: validation of a new approach for studying spatial and temporal changes in the trophic structure of aquatic ecosystems. Can. J. Fish. Aquat. Sci., 70, 143–146. [CrossRef]
  • Hanson N.N., Wurster C.M. and Todd C.D., 2010. Comparison of secondary ion mass spectrometry and micromilling/continuous flow isotope ratio mass spectrometry techniques used to acquire intra–otolith delta O–18 values of wild Atlantic salmon (Salmo salar). Rapid Commun. Mass Spectrom., 24, 2491–2498. [CrossRef] [PubMed]
  • Hoeinghaus D.J. and Zeug S.C., 2008. Can stable isotope ratios provide for community–wide measures of trophic structure? Comment. Ecology, 89, 2353–2357. [CrossRef] [PubMed]
  • Hoelker F., 2003. The metabolic rate of roach in relation to body size and temperature. J. Fish Biol., 62, 565–579. [CrossRef]
  • Hoie H., Andersson C., Folkvord A. and Karlsen O., 2004. Precision and accuracy of stable isotope signals in otoliths of pen–reared cod (Gadus morhua) when sampled with a high–resolution micromill. Marine Biology, 144, 1039–1049. [CrossRef]
  • Hokanson K.E.F., 1977. Temperature requirements of some percids and adaptations to seasonal temperature cycle. J. Fish Res. Board Can., 34, 1524–1550. [CrossRef]
  • Holeton G.F., 1973. Respiration of Arctic Char (Salvelinus alpinus) From a High Arctic Lake. J. Fish Res. Board Can., 30, 717–723. [CrossRef]
  • Horppila J., Ruuhijarvi J., Rask M., Karppinen C., Nyberg K. and Olin M., 2000. Seasonal changes in the diets and relative abundances of perch and roach in the littoral and pelagic zones of a large lake. J. Fish Biol., 56, 51–72. [CrossRef]
  • Huxham M., Kimani E., Newton J. and Augley J., 2007. Stable isotope records from otoliths as tracers of fish migration in a mangrove system. J. Fish Biol., 70, 1554–1567. [CrossRef]
  • Jamieson R.E., Schwarcz H.P. and Brattey J., 2004. Carbon isotopic records from the otoliths of Atlantic cod (Gadus morhua) from eastern Newfoundland, Canada. Fish Res., 68, 83–97. [CrossRef]
  • Janjua M.Y. and Gerdeaux D., 2011. Evaluation of food web and fish dietary niches in oligotrophic Lake Annecy by gut content and stable isotope analysis. Lakes Reserv. Manage., 27, 115–127. [CrossRef]
  • Jardine T.D., Kidd K.A. and O’Driscoll N., 2013. Food web analysis reveals effects of pH on mercury bioaccumulation at multiple trophic levels in streams. Aquat. Toxicol., 132, 46–52. [CrossRef] [PubMed]
  • Kahilainen K.K., Patterson W.P., Sonninen E., Harrod C. and Kiljunen M., 2014. Adaptive radiation along a thermal gradient: preliminary results of habitat use and respiration rate divergence among Whitefish morphs. Plos One, 9(11).
  • Kahl U. and Radke R.J., 2006. Habitat and food resource use of perch and roach in a deep mesotrophic reservoir: enough space to avoid competition? Ecol. Freshw. Fish, 15, 48–56. [CrossRef]
  • Kalish J.M., 1991. C–13 and O–18 isotopic disequilibria in fish otoliths – metabolic and kinetic effects. Mar. Ecol. Prog. Ser., 75, 191–203. [CrossRef]
  • Karas P., 1990. Seasonal changes in growth and standard metabolic–rate of juvenile perch, Perca fluviatilis L. J. Fish Biol., 37, 913–920. [CrossRef]
  • Keith P. and Allardi J., 2001. Atlas des poissons d’eau douce de France, Paris, 387 p.
  • Kim S.T., O’Neil J.R., Hillaire–Marcel C. and Mucci A., 2007. Oxygen isotope fractionation between synthetic aragonite and water: Influence of temperature and Mg2+ concentration. Geochim. Cosmochim. Acta, 71, 4704–4715. [CrossRef]
  • Klemetsen A., Amundsen P.A., Dempson J.B., Jonsson B., Jonsson N., O’Connell M.F. and Mortensen E., 2003. Atlantic salmon Salmo salar L., brown trout Salmo trutta L. and artic charr salvelinus alpinus (L.): a review of aspects of their life histories. Ecol. Freshw. Fish, 12, 1–59. [CrossRef]
  • Kline T.C., Wilson W.J. and Goering J.J., 1998. Natural isotope indicators of fish migration at Prudhoe Bay, Alaska. Can. J. Fish. Aquat. Sci., 55, 1494–1502. [CrossRef]
  • Madenjian C.P., O’Connor D.V., Pothoven S.A., Schneeberger P.J., Rediske R.R., O’Keefe J.P., Bergstedt R.A., Argyle R.L. and Brandt S.B., 2006. Evaluation of a lake whitefish bioenergetics model. T. Am. Fish Soc., 135, 61–75. [CrossRef]
  • McCauley R.W. and Casselman J.M., 1981. The final preferendum as an index of the temperature for optimum growth in fish. In: Tiews K. (ed.), World Symposium on Aquaculture in Heated Effluents and Recirculation Systems. Heenemann Verlagsgesellschaf, pp. 81–93.
  • McMahon K.W., Berumen M.L., Mateo I., Elsdon T.S. and Thorrold S.R., 2011. Carbon isotopes in otolith amino acids identify residency of juvenile snapper (Family: Lutjanidae) in coastal nurseries. Coral Reefs, 30, 1135–1145. [CrossRef]
  • McMahon K.W., Hamady L.L. and Thorrold S.R., 2013. A review of ecogeochemistry approaches to estimating movements of marine animals. Limnol. Oceanogr., 58, 697–714. [CrossRef]
  • Michener R. and Lajtha K., 2007. Stable isotopes in ecology and environmental science. 2nd edition. ISBN 978-1-4051-2680-9. Ecological Methods and Concepts Series. Blackwell Publishing, Malden, Massachusetts 02148-5020, 566 p.
  • Patterson W.P., Smith G.R. and Lohmann K.C., 1993. Continental paleothermometry and seasonality using the isotopic composition of aragonitic otoliths of freshwater fishes. In Continental Climate Change from Isotopic Records. In: Swart P.K., Lohmann K.C., McKenzie J., and Savin S. (ed.), Continental Climate Change from Isotopic Records., Washington, DC, 191–202.
  • Perga M.E. and Gerdeaux D., 2005. Are fish what they eat all year round? Oecologia, 144, 598–606. [CrossRef] [PubMed]
  • Persson L., 1986. Temperature-induced shift in foraging ability in 2 fish species, roach (Rutilus rutilus) and perch (Perca fluviatilis) – implications for coexistence between poïkilotherms. J. Anim. Ecol., 55, 829–839. [CrossRef]
  • Romanek C.S., Grossman E.L. and Morse J.W., 1992. Carbon isotopic fractionation in synthetic aragonite and calcite – Effects of temperature and precipitation rate. Geochim. Cosmochim. Ac., 56, 419–430. [CrossRef]
  • Rowell K., Flessa K.W., Dettman D.L. and Roman M., 2005. The importance of Colorado River flow to nursery habitats of the Gulf corvina (Cynoscion othonopterus). Can. J. Fish. Aquat. Sci., 62, 2874–2885. [CrossRef]
  • Sako A., MacLeod K.G. and O’Reilly C.M., 2007. Stable Oxygen and Carbon Isotopic Compositions of Lates stappersii Otoliths from Lake Tanganyika, East Africa J. Great Lakes Res. 33, 806–815. [CrossRef]
  • Schwarcz H.P., Gao Y., Campana S., Browne D., Knyf M. and Brand U., 1998a. Stable carbon isotope variations in otoliths of Atlantic cod (Gadus morhua). Can. J. Fish. Aquat. Sci., 55, 1798–1806. [CrossRef]
  • Schwarcz H.P., Simpson J.J. and Stringer C.B., 1998b. Neanderthal skeleton from Tabun: U–series data by gamma–ray spectrometry. J. Hum. Evol., 35, 635–645. [CrossRef] [PubMed]
  • Secor D.H., Dean J.M. and Laban E.H., 1991. Otolith removal and preparation for microstructural examination: A user manual. Baruch. Inst.
  • Sherwood G.D. and Rose G.A., 2003. Influence of swimming form on otolith delta C–13 in marine fish. Mar. Ecol. Prog. Ser., 258, 283–289. [CrossRef]
  • Solomon C.T., Weber P.K., Cech J.J., Ingram B.L., Conrad M.E., Macharam M.V., Pogodina A.R. and Franklin R.L., 2006. Experimental determination of the sources of otolith carbon and associated isotopic fractionation. Can. J. Fish. Aquat. Sci., 63, 79–89. [CrossRef]
  • Souchon Y. and Tissot L., 2012. Synthesis of thermal tolerances of the common freshwater fish species in large Western Europe rivers. Knowl. Manag. Aquat. Ecosyst., 405, 03. [CrossRef] [EDP Sciences]
  • Spötl C. and Vennemann T.W., 2003. Continuous-flow isotope ratio mass spectrometric analysis of carbonate minerals. Rapid Communications in Mass Spectrometry, 17, 1004-1006. [CrossRef]
  • Storm–Suke A., Dempson J.B., Reist J.D. and Power M., 2007. A field–derived oxygen isotope fractionation equation for Salvelinus species. Rapid Communications in Mass Spectrometry, 21, 4109–4116. [CrossRef]
  • Svanback R. and Eklov P., 2006. Genetic variation and phenotypic plasticity: causes of morphological and dietary variation in Eurasian perch. Evolutionary Ecology Research, 8, 37–49.
  • Svanback R., Eklov P., Fransson R. and Holmgren K., 2008. Intraspecific competition drives multiple species resource polymorphism in fish communities. Oikos, 117, 114–124. [CrossRef]
  • Svärdson G., 1976. Interspecific population dominance in fish communities of Scandinavian lakes. Institut of Freshwater Research Drottningholm, Sweden, 55, 144–171.
  • Thorrold S.R., Campana S.E., Jones C.N. and Swart P.K., 1997. Factors determining δ13C and δ18O fractionation in aragonitic otoliths of marine fish. Geochim. Cosmochim. Ac., 61, 2909–2919. [CrossRef]
  • Thorrold S.R., Latkoczy C., Swart P.K. and Jones C.M., 2001. Natal homing in a marine fish metapopulation. Science, 291, 297–299. [CrossRef] [PubMed]
  • Tohse H. and Mugiya Y., 2002. Diel variations in carbonate incorporation into otoliths in goldfish. J. Fish Biol., 61, 199–206. [CrossRef]
  • Van der Zanden M.J. and Rasmussen J.B., 2001. Variation in delta N–15 and delta C–13 trophic fractionation: Implications for aquatic food web studies. Limnol. Oceanogr., 46, 2061–2066. [CrossRef]
  • van Dijk P.L.M., Staaks G. and Hardewig I., 2002. The effect of fasting and refeeding on temperature preference, activity and growth of roach, Rutilus rutilus. Oecologia, 130, 496–504. [CrossRef] [PubMed]
  • Vasek M., Kubecka J., Cech M., Drastik V., Matena J., Mrkvicka T., Peterka J. and Prchalova M., 2009. Diel variation in gillnet catches and vertical distribution of pelagic fishes in a stratified European reservoir. Fish Res., 96, 64–69. [CrossRef]
  • Weidman C.R. and Miller R., 2000. High–resolution stable records from North Atlantic cod. Fish Res., 46, 327–342. [CrossRef]
  • Werner E.E. and Gilliam J.F., 1984. The ontogenic niche and species interactions in size–structured populations. Ann. Rev. Ecol. Syst., 15, 393–425. [CrossRef]
  • Winfield I.J., 1986. The influence of simulated aquatic macrophytes on the zooplankton consuption rate of juveniel roach, Rutilus rutilus, rudd, Scardinius erythrophthalmus, and perch, Perca fluviatilis. J. Fish Biol., 29, 37–48. [CrossRef]
  • Wurster C.M. and Patterson W.P., 2003. Metabolic rate of late holocene freshwater fish : evidence from δ13C values of otoliths. Paleobiology, 29, 492–505. [CrossRef]
  • Wurster C.M., Patterson W.P. and Cheatham M.M., 1999. Advances in micromilling techniques: A new apparatus for acquiring high–resolution oxygen and carbon stable isotope values and major/minor elemental ratios from accretionary carbonate. Comput. Geosci., 25, 1155–1162. [CrossRef]
  • Wurster C.M., Patterson W.P., Stewart D.J., Bowlby J.N. and Stewart T.J., 2005. Thermal histories, stress, and metabolic rates of chinook salmon (Oncorhynchus tshawytscha) in Lake Ontario: evidence from intra–otolith stable isotope analyses. Can. J. Fish. Aquat. Sci., 62, 700–713. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.