Issue
Knowl. Manag. Aquat. Ecosyst.
Number 416, 2015
Topical Issue on Fish Ecology
Article Number 36
Number of page(s) 11
DOI https://doi.org/10.1051/kmae/2015031
Published online 10 December 2015
  • Borics G., Grigorszky I., Padisák J. andSzabó S., 2000. Phytoplankton associations in a small hypertrophic fishpond in East Hungary during a change from bottom-up to top-down control. Hydrobiologia, 424, 79–90. [CrossRef] [Google Scholar]
  • Boros G., Mozsár A., Vitál Z., Nagy A.S. andSpecziár A., 2014. Growth and condition factor of hybrid (Bighead Hypophthalmichthys nobilis Richardson, 1845 × silver carp H. molitrix Valenciennes, 1844) Asian carps in the shallow, oligo-mesotrophic Lake Balaton. J. Appl. Ichthyol., 30, 546–548. [CrossRef] [Google Scholar]
  • Burke J.S., Bayne D.R. andRea H., 1986. Impact of silver and bighead carps on plankton communities of channel catfish ponds. Aquaculture, 55, 59–68. [CrossRef] [Google Scholar]
  • Chick J.H. andPegg M.A., 2001. Invasive carp in the Mississippi River Basin. Science, 292, 2250–2251. [CrossRef] [PubMed] [Google Scholar]
  • Clarke A., 1993. Seasonal acclimatization and latitudinal compensation in metabolism: do they exist? Funct. Ecol., 7, 139–149. [CrossRef] [Google Scholar]
  • Cooke S.L., Hill W.R. andMeyer K.P., 2009. Feeding at different plankton densities alters invasive bighead carp (Hypophthalmichthys nobilis) growth and zooplankton species composition. Hydrobiologia, 625, 185–193. [CrossRef] [Google Scholar]
  • Cremer M.C. andSmitherman R.O., 1980. Food habits and growth of silver and bighead carp in cages and ponds. Aquaculture, 20, 57–64. [CrossRef] [Google Scholar]
  • Dong S. andLi D., 1994. Comparative studies of the feeding selectivity of silver carp, Hypophthalmichthys molitrix, and bighead carp, Aristichthys nobilis. J. Fish Biol., 44, 621–626. [CrossRef] [Google Scholar]
  • Fukushima M., Takamura N., Sun L., Nakagawa M., Matsushige K. andXie P., 1999. Changes in the plankton community following introduction of filter-feeding planktivorous fish. Freshwater Biol., 42, 719–735. [CrossRef] [Google Scholar]
  • Görgényi J., Boros G., Vitál Z., Mozsár A., Vasas G. and Borics G., 2015. The role of filter-feeding Asian carps in algal dispersion. Hydrobiologia, in press, DOI: 10.1007/s10750-015-2285-2 [Google Scholar]
  • Hammer Ř., Harper D. A. T. andRyan P. D., 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4, 9 p. http://palaeo-electronica.org/2001_1/past/issue1_01.htm. [Google Scholar]
  • Hampl A., Jirásek J. andSirotek D., 1983. Growth morphology of the filtering apparatus of silver carp (Hypophthalmichthys molitrix Val.) II. microscopic anatomy. Aquaculture, 31, 153–158. [CrossRef] [Google Scholar]
  • Jennings D.P., 1988. Bighead carp (Hypophthalmichthys nobilis): a biological synopsis. U.S. Fish and Wildlife Service, Biological Report 88, Washington DC, USA. [Google Scholar]
  • Jirásek J., Hampl A. andSirotek D., 1981. Growth morphology of the filtering apparatus silver carp (Hypophthalmichthys molitrix) – I. Gross anatomy state. Aquaculture, 26, 41–48. [CrossRef] [Google Scholar]
  • Kolar C.S., Chapman D.C., Courtenay W.R.Jr., Housel C.M., Williams J.D. and Jennings D.P., 2007. Bigheaded carps – A biological synopsis and environmental risk assessment. American Fisheries Society Special Publication 33, Bethesda, Maryland, USA. [Google Scholar]
  • Lazareva L.P., Omarov M.O. andLezina A.N., 1977. Feeding and growth of the bighead, Aristichthys nobilis, in the waters of Dagestan. J. Ichthyol., 17, 65–71. [Google Scholar]
  • Lieberman D.M., 1996. Use of silver carp (Hypophthalmichthys molitrix) and bighead carp (Aristichthys nobilis) for algae control in a small pond: Changes in water quality. J. Freshwater Ecol., 11, 391−397. [CrossRef] [Google Scholar]
  • Lin Q., Jiang X., Han B.P. andJeppesen E., 2014. Does stocking of filter-feeding fish for production have a cascading effect on zooplankton and ecological state? A study of fourteen (sub)tropical Chinese reservoirs with contrasting nutrient concentrations. Hydrobiologia, 736, 115–125. [CrossRef] [Google Scholar]
  • Lu M., Xie P., Tang H., Shao Z. andXie L., 2002. Experimental study of trophic cascade effect of silver carp (Hypophthalmichthys molitrix) in a subtropical lake, Lake Donghu: On plankton community and underlying mechanisms of changes of crustacean community. Hydrobiologia, 487, 19–31. [CrossRef] [Google Scholar]
  • Opuszynski K., Shireman J.V. andCichra C.E., 1991. Food assimilation and filtering rate of bighead carp kept in cages. Hydrobiologia, 220, 49–56. [CrossRef] [Google Scholar]
  • Sampson S.J., Chick J.H. andPegg M.A., 2009. Diet overlap among two Asian carp and three native fishes in backwater lakes on the Illinois and Mississippi rivers. Biol. Invasions, 11, 483–496. [CrossRef] [Google Scholar]
  • Shao Z., Xie P. andZhuge Y., 2001. Long-term changes of planktonic rotifers in a subtropical Chinese lake dominated by filter-feeding fishes. Freshwater Biol., 46, 973–986. [CrossRef] [Google Scholar]
  • Shapiro J., 1985. Food and intestinal contents of the silver carp, Hypophthalmichthys molitrix (Val.) in Lake Kinneret between 1982-1984. Isr. J. Aquacult. Bamidgeh, 37, 3–18. [Google Scholar]
  • Sieburth J.M.N., Smetacek V. and J. Lenz., 1978. Pelagic ecosystem structure of heterotrophic compartments of the plankton and their relationship to planktonic size fractions. Limnol. Oceanogr., 23, 1256–1263. [CrossRef] [Google Scholar]
  • Smith D.W., 1989. The feeding selectivity of silver carp, Hypophthalmichthys molitrix Val. J. Fish. Biol., 34, 819–828. [CrossRef] [Google Scholar]
  • Spataru P. andGophen M., 1985. Feeding behaviour of silver carp Hypophthalmichthys molitrix Val. and its impact on the food web in Lake Kinneret, Israel. Hydrobiologia, 120, 53–61. [CrossRef] [Google Scholar]
  • Spataru P., Wohlfarth G.W. andHulata G., 1983. Studies on the natural food of different fish species in intensively manured polyculture ponds. Aquaculture, 35, 283–298. [CrossRef] [Google Scholar]
  • Tátrai I., Paulovits G., Józsa V., Boros G., György Á.I. and Héri J., 2009. Halállományok eloszlása és a betelepített halfajok állománya a Balatonban In: Bíró P. and Banczerowski J. (eds.), A Balaton-kutatások fontosabb eredményei 1999−2009. MTA, Budapest (in Hungarian), pp. 129–141. [Google Scholar]
  • Vitál Z., Specziár A., Mozsár A., Takács P., Borics G., Görgényi J., Nagy S.A. andBoros G., 2015. Applicability of gill raker filtrates and foregut contents in the diet assessment of filter-feeding Asian carps. Fundam. Appl. Limnol., 187, 79–86. [CrossRef] [Google Scholar]
  • Vörös L., Oldal I., Présing M. and V.-Balogh K., 1997. Size-selective filtration and taxon-specific digestion of plankton algae by silver carp (Hypophthalmichthys molitrix Val.). Hydrobiologia, 342/343, 223–228. [CrossRef] [Google Scholar]
  • Xie P., 1999. Gut contents of silver carp, Hypophthalmichthys molitrix, and the disruption of a centric diatom, Cyclotella, on passage through the esophagus and intestine. Aquaculture, 180, 295–305. [CrossRef] [Google Scholar]
  • Xie P., 2001. Gut contents of bighead carp (Aristichthys nobilis) and the processing and digestion of algal cells in the alimentary canal. Aquaculture, 195, 149–161. [CrossRef] [Google Scholar]
  • Xie P. andChen Y., 2001. Invasive carp in China’s Plateau lakes. Science, 224, 999–1000. [Google Scholar]
  • Xie P. andLiu J., 2001. Practical success of biomanipulation using filter-feeding fish to control cyanobacteria blooms - A synthesis of decades of research and application in a subtropical hypereutrophic lake. The Scientific World, 1, 337–356. [CrossRef] [Google Scholar]
  • Yang Y., Huang X. andLiu J., 1999. Long-therm changes in crustacean zooplankton and water quality in a shallow eutrophic Chinese lake densely stocked with fish. Hydrobiologia, 391, 195–203. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.