Open Access
Knowl. Managt. Aquatic Ecosyst.
Number 415, 2014
Article Number 10
Number of page(s) 12
Published online 24 December 2014
  • Åbjörnsson K., Dahl J., Nyström P. and Brönmark C., 2000. Influence of predator and dietary chemical cues on the behaviour and shredding efficiency of Gammarus pulex. Aquat. Ecol., 34, 379–387. [CrossRef]
  • Albins M.A. and Hixon M.A., 2013. Worst case scenario: potential long-term effects of invasive predatory lionfish (Pterois volitans) on Atlantic and Caribbean coral-reef communities. Environ. Biol. Fish., 96, 1151–1157. [CrossRef]
  • Auld J.R., Agrawal A.A. and Relyea R.A., 2010. Re-evaluating the costs and limits of adaptive phenotypic plasticity. P. Roy. Soc. B-Biol. Sci., 277, 503–511. [CrossRef]
  • Bernot R.J. and Turner A.M., 2001. Predator identity and trait-mediated indirect effects in a littoral food web. Oecologia, 129, 139–146. [CrossRef] [PubMed]
  • Bethel W.M. and Holmes J.C., 1973. Altered evasive behavior and responses to light in amphipods harboring acanthocephalan cystacanths. J. Parasitol. 59, 945–956. [CrossRef]
  • Brönmark C. and Hansson L.A. (eds.). 2012. Chemical ecology in aquatic systems. Oxford University Press.
  • Chivers D. and Smith R. 1998. Chemical alarm signalling in aquatic predator-prey systems: a review and prospectus. Ecoscience, 5, 338–352.
  • Covich A., Crowl T., Alexan der Jr J. and Vaughn C., 1994. Predator-avoidance responses in freshwater decapod-gastropod interactions mediated by chemical stimuli. J.N. Am. Benthol. Soc., 13, 283–290. [CrossRef]
  • Dalesman S., Rundle S.D., Coleman R.A. and Cotton P.A., 2006. Cue association and antipredator behaviour in a pulmonate snail, Lymnaea stagnalis. Anim. Behav., 71, 789–797. [CrossRef]
  • Dalesman S., Rundle S.D. and Cotton P.A., 2009. Developmental plasticity compensates for selected low levels of behavioural avoidance in a freshwater snail. Anim. Behav., 78, 987–991. [CrossRef]
  • Daly D., Higginson A.D., Chen D., Ruxton G.D. and Speed M.P., 2012. Densitydependent investment in costly antipredator defences: an explanation for the weak survival benefit of group living. Ecol. Lett., 15, 576–583. [CrossRef] [PubMed]
  • DeWitt T. and Scheiner S., 2004. Phenotypic plasticity: functional and conceptual approaches. Oxford: Oxford University Press, Oxford.
  • Dicke M. and Grostal P., 2001. Chemical detection of natural enemies by arthropods: an ecological perspective. Annu. Rev. Ecol. Evol. S., 32, 1–23. [CrossRef]
  • Dunn A.M., Dick J.T.A. and Hatcher M.J., 2008. The less amorous Gammarus: predation risk affects mating decisions in Gammarus duebeni (Amphipoda). Anim. Behav., 76, 1289–1295. [CrossRef]
  • Ferrari M.C.O., Gonzalo A., Messier F. and Chivers D.P., 2007. Generalization of learned predator recognition: an experimental test and framework for future studies. P. Roy. Soc. B-Biol. Sci., 274, 1853. [CrossRef]
  • Gherardi F., Renai B. and Corti C., 2001. Crayfish predation on tadpoles: a comparison between a native (Austropotamobius pallipes) and an alien species (Procambarus clarkii). Bull. Fr. Pêche Piscic., 361, 659–668. [CrossRef] [EDP Sciences]
  • Gomez-Mestre I. and Díaz-Paniagua C., 2011. Invasive predatory crayfish do not trigger inducible defences in tadpoles. P. Roy. Soc. B-Biol. Sci., 278, 3364–3370. [CrossRef]
  • Haddaway N.R., Wilcox R.H., Heptonstall R.E., Griffiths H.M., Mortimer R.J., Christmas M. and Dunn A.M., 2012. Predatory functional response and prey choice identify predation differences between native/invasive and parasitised/unparasitised crayfish. PLoS One 7, e32229. [CrossRef] [PubMed]
  • Harvell C. and Tollrian R. 1999. Why inducible defenses? In: Tollrian R., Harvell C. (eds.), The ecology and evolution of inducible defences. Princeton University Press, Princeton, 3–9.
  • Harvey G.L., Moorhouse T.P., Clifford N.J., Henshaw A.J., Johnson M.F., Macdonald D.W., Reid I. and Rice S.P., 2011. Evaluating the role of invasive aquatic species as drivers of fine sediment-related river management problems: the case of the signal crayfish (Pacifastacus leniusculus). Prog. Phys. Geog., 35, 517–533. [CrossRef]
  • Jackson M.C., Jones T., Milligan M., Sheath D., Taylor J., Ellis A., England J. and Grey J., 2014. Niche differentiation among invasive crayfish and their impacts on ecosystem structure and functioning. Freshwater Biol., 59, 1123–1135. [CrossRef]
  • Lewis D.B. 2001. Trade-offs between growth and survival: responses of freshwater snails to predacious crayfish. Ecology, 82, 758–765. [CrossRef]
  • McGeoch M.A., Butchart S.H.M., Spear D., Marais E., Kleynhans E.J., Symes A., Chanson J., Hoffmann M., 2010. Global indicators of biological invasion: species numbers, biodiversity impact and policy responses. Divers. and Distrib., 16, 95–108. [CrossRef]
  • Mery F., Burns J.G. 2010. Behavioural plasticity: an interaction between evolution and experience. Evol. Ecol., 24, 571–583. [CrossRef]
  • Nyström P. and Åbjörnsson K., 2000. Effects of fish chemical cues on the interactions between tadpoles and crayfish. Oikos 88, 181–190. [CrossRef]
  • Ohguchi O., 1978. Experiments on the selection against colour oddity of water fleas by three-spined sticklebacks. Z. Tierphysiol. Tierer 47, 254–267.
  • Ohman M.D., 1988. Behavioral responses of zooplankton to predation. B. Mar. Sci. 43, 530–550.
  • Orr M. and Lukowiak K., 2009. Sympatric predator detection alters cutaneous respiration in Lymnaea. J. Exp. Biol., 212, 2237–2247. [CrossRef] [PubMed]
  • Orr M.V., Hittel K. and Lukowiak K. 2009. Different strokes for different folks’: geographically isolated strains of Lymnaea stagnalis only respond to sympatric predators and have different memory forming capabilities. J. Exp. Biol., 212, 2237–2247. [CrossRef] [PubMed]
  • Paterson R.A., Pritchard D.W., Dick J.T., Alexander M.E., Hatcher M.J. and Dunn A.M. 2013. Predator cue studies reveal strong trait-mediated effects in communities despite variation in experimental designs. Anim. Behav., 86, 1301–1313. [CrossRef]
  • Perrot-Minnot M.J., Kaldonski N. and Cézilly F. 2007. Increased susceptibility to predation and altered anti-predator behaviour in an acanthocephalan-infected amphipod. Int. J. Parasitol., 37, 645–651. [CrossRef] [PubMed]
  • Pinheiro J.C. and Bates D.M., 2000. Mixed-effects models in S and S-plus. Springer.
  • R Development Core Team, 2005. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Development Core Team.
  • Reed T.E., Waples R.S., Schindler D.E., Hard J.J. and Kinnison M.T. 2010. Phenotypic plasticity and population viability: the importance of environmental predictability. P. Roy. Soc. B-Biol. Sci., 277, 3391–400. [CrossRef]
  • Rohlf F.J., 1997. TPSDig. State University of New York, New York.
  • Sevenster P., Bruijn E.F.D. and Huisman J.J., 1995. Temporal structure in stickleback behaviour. Behaviour, 132, 1267–1284. [CrossRef]
  • Sih A. and McCarthy T., 2002. Prey responses to pulses of risk and safety: testing the risk allocation hypothesis. Anim. Behav., 63, 437–443. [CrossRef]
  • Simberloff D., 2011. How common are invasion-induced ecosystem impacts? Biol. Invasions, 13, 1255–1268. [CrossRef]
  • Trussell G.C. and Nicklin M.O., 2002. Cue sensitivity, inducible defence, and trade-offs in a marine snail. Ecology, 83, 1635–1647. [CrossRef]
  • Turner A., 2008. Predator diet and prey behaviour: freshwater snails discriminate among closely related prey in a predator’s diet. Anim. Behav., 76, 1211–1217. [CrossRef]
  • Turner A., Bernot R. and Boes C., 2000. Chemical cues modify species interactions: the ecological consequences of predator avoidance by freshwater snails. Oikos, 88, 148–158. [CrossRef]
  • Turner A.M., 1996. Freshwater snails alter habitat use in response to predation. Anim. Behav., 51, 747–756. [CrossRef]
  • Vitousek P.M., D’Antonio C.M., Loope L.L. and Westbrooks R., 1996. Biological invasions as global environmental change. Am. Sci., 84, 468–478.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.