Open Access
Knowl. Managt. Aquatic Ecosyst.
Number 415, 2014
Article Number 10
Number of page(s) 12
Published online 24 December 2014
  • Åbjörnsson K., Dahl J., Nyström P. and Brönmark C., 2000. Influence of predator and dietary chemical cues on the behaviour and shredding efficiency of Gammarus pulex. Aquat. Ecol., 34, 379–387. [CrossRef] [Google Scholar]
  • Albins M.A. and Hixon M.A., 2013. Worst case scenario: potential long-term effects of invasive predatory lionfish (Pterois volitans) on Atlantic and Caribbean coral-reef communities. Environ. Biol. Fish., 96, 1151–1157. [Google Scholar]
  • Auld J.R., Agrawal A.A. and Relyea R.A., 2010. Re-evaluating the costs and limits of adaptive phenotypic plasticity. P. Roy. Soc. B-Biol. Sci., 277, 503–511. [CrossRef] [Google Scholar]
  • Bernot R.J. and Turner A.M., 2001. Predator identity and trait-mediated indirect effects in a littoral food web. Oecologia, 129, 139–146. [CrossRef] [PubMed] [Google Scholar]
  • Bethel W.M. and Holmes J.C., 1973. Altered evasive behavior and responses to light in amphipods harboring acanthocephalan cystacanths. J. Parasitol. 59, 945–956. [CrossRef] [Google Scholar]
  • Brönmark C. and Hansson L.A. (eds.). 2012. Chemical ecology in aquatic systems. Oxford University Press. [Google Scholar]
  • Chivers D. and Smith R. 1998. Chemical alarm signalling in aquatic predator-prey systems: a review and prospectus. Ecoscience, 5, 338–352. [Google Scholar]
  • Covich A., Crowl T., Alexan der Jr J. and Vaughn C., 1994. Predator-avoidance responses in freshwater decapod-gastropod interactions mediated by chemical stimuli. J.N. Am. Benthol. Soc., 13, 283–290. [CrossRef] [Google Scholar]
  • Dalesman S., Rundle S.D., Coleman R.A. and Cotton P.A., 2006. Cue association and antipredator behaviour in a pulmonate snail, Lymnaea stagnalis. Anim. Behav., 71, 789–797. [CrossRef] [Google Scholar]
  • Dalesman S., Rundle S.D. and Cotton P.A., 2009. Developmental plasticity compensates for selected low levels of behavioural avoidance in a freshwater snail. Anim. Behav., 78, 987–991. [CrossRef] [Google Scholar]
  • Daly D., Higginson A.D., Chen D., Ruxton G.D. and Speed M.P., 2012. Densitydependent investment in costly antipredator defences: an explanation for the weak survival benefit of group living. Ecol. Lett., 15, 576–583. [CrossRef] [PubMed] [Google Scholar]
  • DeWitt T. and Scheiner S., 2004. Phenotypic plasticity: functional and conceptual approaches. Oxford: Oxford University Press, Oxford. [Google Scholar]
  • Dicke M. and Grostal P., 2001. Chemical detection of natural enemies by arthropods: an ecological perspective. Annu. Rev. Ecol. Evol. S., 32, 1–23. [CrossRef] [Google Scholar]
  • Dunn A.M., Dick J.T.A. and Hatcher M.J., 2008. The less amorous Gammarus: predation risk affects mating decisions in Gammarus duebeni (Amphipoda). Anim. Behav., 76, 1289–1295. [CrossRef] [Google Scholar]
  • Ferrari M.C.O., Gonzalo A., Messier F. and Chivers D.P., 2007. Generalization of learned predator recognition: an experimental test and framework for future studies. P. Roy. Soc. B-Biol. Sci., 274, 1853. [CrossRef] [Google Scholar]
  • Gherardi F., Renai B. and Corti C., 2001. Crayfish predation on tadpoles: a comparison between a native (Austropotamobius pallipes) and an alien species (Procambarus clarkii). Bull. Fr. Pêche Piscic., 361, 659–668. [CrossRef] [EDP Sciences] [Google Scholar]
  • Gomez-Mestre I. and Díaz-Paniagua C., 2011. Invasive predatory crayfish do not trigger inducible defences in tadpoles. P. Roy. Soc. B-Biol. Sci., 278, 3364–3370. [CrossRef] [Google Scholar]
  • Haddaway N.R., Wilcox R.H., Heptonstall R.E., Griffiths H.M., Mortimer R.J., Christmas M. and Dunn A.M., 2012. Predatory functional response and prey choice identify predation differences between native/invasive and parasitised/unparasitised crayfish. PLoS One 7, e32229. [Google Scholar]
  • Harvell C. and Tollrian R. 1999. Why inducible defenses? In: Tollrian R., Harvell C. (eds.), The ecology and evolution of inducible defences. Princeton University Press, Princeton, 3–9. [Google Scholar]
  • Harvey G.L., Moorhouse T.P., Clifford N.J., Henshaw A.J., Johnson M.F., Macdonald D.W., Reid I. and Rice S.P., 2011. Evaluating the role of invasive aquatic species as drivers of fine sediment-related river management problems: the case of the signal crayfish (Pacifastacus leniusculus). Prog. Phys. Geog., 35, 517–533. [CrossRef] [Google Scholar]
  • Jackson M.C., Jones T., Milligan M., Sheath D., Taylor J., Ellis A., England J. and Grey J., 2014. Niche differentiation among invasive crayfish and their impacts on ecosystem structure and functioning. Freshwater Biol., 59, 1123–1135. [CrossRef] [Google Scholar]
  • Lewis D.B. 2001. Trade-offs between growth and survival: responses of freshwater snails to predacious crayfish. Ecology, 82, 758–765. [CrossRef] [Google Scholar]
  • McGeoch M.A., Butchart S.H.M., Spear D., Marais E., Kleynhans E.J., Symes A., Chanson J., Hoffmann M., 2010. Global indicators of biological invasion: species numbers, biodiversity impact and policy responses. Divers. and Distrib., 16, 95–108. [Google Scholar]
  • Mery F., Burns J.G. 2010. Behavioural plasticity: an interaction between evolution and experience. Evol. Ecol., 24, 571–583. [CrossRef] [Google Scholar]
  • Nyström P. and Åbjörnsson K., 2000. Effects of fish chemical cues on the interactions between tadpoles and crayfish. Oikos 88, 181–190. [CrossRef] [Google Scholar]
  • Ohguchi O., 1978. Experiments on the selection against colour oddity of water fleas by three-spined sticklebacks. Z. Tierphysiol. Tierer 47, 254–267. [Google Scholar]
  • Ohman M.D., 1988. Behavioral responses of zooplankton to predation. B. Mar. Sci. 43, 530–550. [Google Scholar]
  • Orr M. and Lukowiak K., 2009. Sympatric predator detection alters cutaneous respiration in Lymnaea. J. Exp. Biol., 212, 2237–2247. [CrossRef] [PubMed] [Google Scholar]
  • Orr M.V., Hittel K. and Lukowiak K. 2009. Different strokes for different folks’: geographically isolated strains of Lymnaea stagnalis only respond to sympatric predators and have different memory forming capabilities. J. Exp. Biol., 212, 2237–2247. [CrossRef] [PubMed] [Google Scholar]
  • Paterson R.A., Pritchard D.W., Dick J.T., Alexander M.E., Hatcher M.J. and Dunn A.M. 2013. Predator cue studies reveal strong trait-mediated effects in communities despite variation in experimental designs. Anim. Behav., 86, 1301–1313. [CrossRef] [Google Scholar]
  • Perrot-Minnot M.J., Kaldonski N. and Cézilly F. 2007. Increased susceptibility to predation and altered anti-predator behaviour in an acanthocephalan-infected amphipod. Int. J. Parasitol., 37, 645–651. [Google Scholar]
  • Pinheiro J.C. and Bates D.M., 2000. Mixed-effects models in S and S-plus. Springer. [Google Scholar]
  • R Development Core Team, 2005. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Development Core Team. [Google Scholar]
  • Reed T.E., Waples R.S., Schindler D.E., Hard J.J. and Kinnison M.T. 2010. Phenotypic plasticity and population viability: the importance of environmental predictability. P. Roy. Soc. B-Biol. Sci., 277, 3391–400. [CrossRef] [Google Scholar]
  • Rohlf F.J., 1997. TPSDig. State University of New York, New York. [Google Scholar]
  • Sevenster P., Bruijn E.F.D. and Huisman J.J., 1995. Temporal structure in stickleback behaviour. Behaviour, 132, 1267–1284. [CrossRef] [Google Scholar]
  • Sih A. and McCarthy T., 2002. Prey responses to pulses of risk and safety: testing the risk allocation hypothesis. Anim. Behav., 63, 437–443. [CrossRef] [Google Scholar]
  • Simberloff D., 2011. How common are invasion-induced ecosystem impacts? Biol. Invasions, 13, 1255–1268. [CrossRef] [Google Scholar]
  • Trussell G.C. and Nicklin M.O., 2002. Cue sensitivity, inducible defence, and trade-offs in a marine snail. Ecology, 83, 1635–1647. [CrossRef] [Google Scholar]
  • Turner A., 2008. Predator diet and prey behaviour: freshwater snails discriminate among closely related prey in a predator’s diet. Anim. Behav., 76, 1211–1217. [CrossRef] [Google Scholar]
  • Turner A., Bernot R. and Boes C., 2000. Chemical cues modify species interactions: the ecological consequences of predator avoidance by freshwater snails. Oikos, 88, 148–158. [CrossRef] [Google Scholar]
  • Turner A.M., 1996. Freshwater snails alter habitat use in response to predation. Anim. Behav., 51, 747–756. [CrossRef] [Google Scholar]
  • Vitousek P.M., D’Antonio C.M., Loope L.L. and Westbrooks R., 1996. Biological invasions as global environmental change. Am. Sci., 84, 468–478. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.