Open Access
Issue
Knowl. Managt. Aquatic Ecosyst.
Number 408, 2013
Article Number 07
Number of page(s) 21
DOI https://doi.org/10.1051/kmae/2013042
Published online 14 May 2013
  • Armstrong W., 1979. Aeration in higher plants. In: Woolhouse H.W. (ed.), Advances in Botanical Research, Academic Press, London, Vol. 7, 225–332. [Google Scholar]
  • Armstrong J. andArmstrong W., 2001. An overview of the effects of phytotoxins on Phragmites australis in relation to die-back. Aquat. Bot., 69, 251–268. [CrossRef] [Google Scholar]
  • Armstrong W., Beckett P., Justin S.H.F.W. and Lythe S., 1991a. Modelling and other aspects of root aeration by diffusion. In: Jackson M.B., Davies D.D. and Lambers H. (eds.), Plant Life under Oxygen deprivation, APB Academic Publishing, The Hague, 267–282. [Google Scholar]
  • Armstrong W., Justin S.H.F.W., Beckett P.M. andLythe S., 1991b. Root adaptation to soil waterlogging. Aquat. Bot., 39, 57–73. [CrossRef] [Google Scholar]
  • Armstrong W., Brändle R. andJackson M.B., 1994. Mechanisms of flood tolerance in plants. Acta Bot. Neerl., 43, 307–358. [Google Scholar]
  • Baxter R.M., 1977. Environmental effects of dams and impoundments. Annu. Rev. Ecol. Syst., 8, 255–283. [CrossRef] [Google Scholar]
  • Björk S., Bengtsson L., Berggren H., Cronberg G., Digerfeldt G., Fleischer S., Gelin C., Lindmark G., Malmer N., Plejmark F., Ripl W. andSwanberg P.O., 1972. Ecosystem studies in connection with restoration of lakes. Verhandlungen des Internationalen Verein Limnologie, 18, 379–387. [Google Scholar]
  • Blindow I., 1992. Long and short-term dynamics of submerged macrophytes in two shallow eutrophic lakes. Freshwater Biol., 28, 15–27. [CrossRef] [Google Scholar]
  • Bochove E., Beauchemin S. andThériault G., 2002. Continuous multiple measurement of soil redox potential using platinum microelectrodes. Soil Sci. Soc. Am. J., 66, 1813–1820. [CrossRef] [Google Scholar]
  • Brady N.C. and Weil R.R., 2002. The Nature and Properties of Soils, Prentice Hall, Upper Saddle River, New Jersey, 960 p. [Google Scholar]
  • Brix H. andSorrell B.K., 1996. Oxygen stress in wetland plants: comparison of de-oxygenated and reducing root environments. Funct. Ecol., 10, 521–526. [CrossRef] [Google Scholar]
  • Carpenter S.R. andLodge D.M., 1986. Effects of submersed macrophytes on ecosystem processes. Aquat. Bot., 26, 341–370. [CrossRef] [EDP Sciences] [Google Scholar]
  • Čížková H., Brix H., Kopecký J. andLukavská J., 1999. Organic acids in the sediments of wetlands dominated by Phragmites australis: evidence of phytotoxic concentrations. Aquat. Bot., 64, 303–315. [CrossRef] [Google Scholar]
  • Čížková H., Pechar L., Husák Š., Květ J., Bauer V., Radová J. andEdwards K., 2001. Chemical characteristics of soils and pore waters of three wetland sites dominated by Phragmites australis: relation to vegetation composition and reed performance. Aquat. Bot., 69, 235–249. [CrossRef] [Google Scholar]
  • Coops H. andHosper S.H., 2002. Water-level management as a tool for the restoration of shallow lakes in the Netherlands. Lake Reserv. Manage., 18, 293–298. [CrossRef] [Google Scholar]
  • Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Union, 327, 1–73. [Google Scholar]
  • Dušek J., Picek T. andČížková H., 2008. Redox potential dynamics in a horizontal subsurface flow constructed wetland for wastewater treatment: Diel, seasonal and spatial fluctuations. Ecol. Eng., 34, 223–232. [CrossRef] [Google Scholar]
  • Dykyjová D. and Květ J., 1970. Comparison of biomass production in reedswamp communities growing in South Bohemia and South Moravia. In: IBP PT-PP Report No. 1, Czechoslovak Academy of Sciences, Praha, 71–79. [Google Scholar]
  • Ekstam B., Johannesson R. andMilberg P., 1999. The effect of light and number of diurnal temperature fluctuations on germination of Phragmites australis. Seed Sci. Res., 9, 165–170. [CrossRef] [Google Scholar]
  • Ellenberg H., Weber H.E., Düll R., Wirth V., Werner W. and Paulissen D., 1992. Zeigerwerte von Pflanzen in Mitteleuropa 3., durchgesehene Auflage. Verlag Erich Goltze KG., Göttingen. [Google Scholar]
  • Furey P.C., Nordin R.N. andMazumder A., 2004. Water level drawdown affects physical and biogeochemical properties of littoral sediments of a reservoir and a natural lake. Lake Reserv. Manage., 20, 280–295. [CrossRef] [Google Scholar]
  • Gambrell R.P. and Patrick W.H., 1978. Chemical and Microbiological properties of anaerobic soils and sediments. In: Hook D.D. and Crawford R.M.M. (eds.), Plant Life in Anaerobic Environments, Ann Arbor, Michigan, 351–375. [Google Scholar]
  • Gasith A. and Hoyer M.V., 1998. Structuring role of macrophytes in lakes: changing influence along lake size and depth gradients. In: Jeppesen E., Søndergaard M., Søndergaard M. and Christoffersen K. (eds.), The Structuring Role of Submerged Macrophytes in Lakes, Springer New York, 381–392. [Google Scholar]
  • Hejný S., 1960. Ökologische Charakteristik der Wasser- und Sumpfpflanzen in den slowakischen Tiefebenen (Donau- und Theißgebiet), Vydavatel’stvo SAV, Bratislava, 480 p. [Google Scholar]
  • Hejný S. and Husák Š., 1978. Higher plant communities. In: Dykyjová D. and Květ J. (eds.), Pond Littoral Ecosystems: Structure and Functioning, Springer, Berlin, 23–64. [Google Scholar]
  • Hejný S. and Segal S., 1998. General ecology of wetlands. In: Westlake D.F., Květ J. and Szczepański A. (eds.), The Production Ecology of Wetlands, Cambridge University Press, Cambridge, 367–404. [Google Scholar]
  • Hellsten S. andRiihimäki J., 1996. Effects of lake water level regulation on the dynamics of aquatic macrophytes in northern Finland. Hydrobiologia, 340, 85–92. [CrossRef] [Google Scholar]
  • Hellsten S., Marttunen M., Palomäki R., Riihimäki J. andAlasaarela E., 1996. Towards an ecologically-based regulation practice in Finnish hydroelectric lakes. Regul. River., 12, 535–545. [CrossRef] [Google Scholar]
  • Hill N.M., Keddy P.A. andWiesheu I.C., 1998. A hydrological model for predicting the effects of dams on the shoreline vegetation of lakes and reservoirs. Environ. Manage., 22, 723–736. [CrossRef] [PubMed] [Google Scholar]
  • Hroudová Z., 1988. Littoral Vegetation of the Rožmberk Fishpond and its Mineral Nutrient Economy, Academia, Praha, 112 p. [Google Scholar]
  • Hutchinson G.E., 1975. A Treatise on Limnology. Limnological Botany, Wiley, New York, Vol. III, 660 p. [Google Scholar]
  • Janauer G.A. andWychera U., 2000. Biodiversity, succession and the functional role of macrophytes in the New Danube (Vienna, Austria). Arch. Hydrobiol. Suppl., 135, 61–74. [Google Scholar]
  • Káplová M., Keith R.E. andKvět J., 2010. The effect of nutrient level on plant structure and production in a wet grassland: a field study. Plant. Ecol., 212, 809–819. [CrossRef] [Google Scholar]
  • Keddy P.A. andReznicek A.A., 1986. Great Lakes vegetation dynamics: the role of fluctuating water levels and buried seeds. J. Great Lakes Res., 12, 25–36. [CrossRef] [Google Scholar]
  • Kopáček J. andHejzlar J., 1995. Semi-micro determination of total phosphorus in soils, sediments, and organic materials: a simplified perchloric acid digestion procedure. Commun. Soil Sci. Plan., 26, 1935–1946. [CrossRef] [Google Scholar]
  • Krolová M., Čížková H. andHejzlar J., 2011. Littoral zonation in a cove of Lipno Reservoir. Acta Musei Bohemiae meridionalis in České Budějovice - Scientiae naturales, 51, 57–72 (in Czech). [Google Scholar]
  • Krolová M., Čížková H. andHejzlar J., 2012. Limits of development of littoral vegetation in a storage reservoir: Case study of Lipno Reservoir, the Czech Republic. Limnologica, 42, 165–174. [CrossRef] [Google Scholar]
  • Květ J., Westlake D.F., Dykyjová D., Marshall E.J.P. and Ondok J.P., 1998. Primary production in wetlands. In: Westlake D.F., Květ J. and Szczepański A. (eds.), The production Ecology of wetlands, Cambridge University press, 78–139. [Google Scholar]
  • Lepš J. and Šmilauer P., 2003. Multivariate analysis of ecological data using CANOCO, Cambridge University Press, 284 p. [Google Scholar]
  • Lindström T., 1973. Life in a Lake Reservoir: Fewer Options, Decreased Production. Ambio, 2, 145–153. [Google Scholar]
  • McComas S., 2003. Lake and Pond Management, Guidebook, Lewis Publishers, Washington, 286 p. [Google Scholar]
  • Minář J., 1964. Changes of aquatic and littoral vegetation on Lipno Reservoir. In: Ježdík T. and Jeník J. (eds.), Vegetation Problems in the Construction of Water Reservoirs, Academia, Praha, 233–245 (in Czech). [Google Scholar]
  • Moss B., 2008. The kingdom of the shore: achievement of good ecological potential in reservoirs. Freshw. Rev., 1, 29–42. [Google Scholar]
  • Nilsson C. andKeddy P.A., 1988. Predictability of change in shoreline vegetation in a hydroelectric reservoir, northern Sweden. Can. J. Fish. Aquat. Sci., 45, 1896–1904. [CrossRef] [Google Scholar]
  • Partanen S. andHellsten S., 2005. Changes of emergent aquatic macrophyte cover in seven large boreal lakes in Finland with special reference to water level regulation. Fennia, 183, 57–79. [Google Scholar]
  • Ponnamperuma F.N., 1984. Effects of flooding on soils. In: Kozlowski T.T. (ed.), Flooding and Plant Growth, Academic Press, Orlando, 10–46. [Google Scholar]
  • Richardson J.I. and Vepraskas M.J., 2000. Wetland Soils: Genesis Hydrology, Landscape and Classification, Lewis Publishers, USA, 432 p. [Google Scholar]
  • Scheffer M., 1999. The effect of aquatic vegetation on turbidity; how important are the filter feeders? Hydrobiologia, 409, 307–316. [CrossRef] [Google Scholar]
  • Shoup D.E. andWahl D.H., 2009. Fish diversity and abundance in relation to interannual and lake-specific variation in abiotic characteristics of floodplain lakes of the lower Kaskaskia River, Illinois. T. Am. Fish. Soc., 138, 1076–1092. [CrossRef] [Google Scholar]
  • Šumberová K., Lososová Z., Fabšicová M. andHoráková V., 2006. Variability of vegetation of exposed pond bottoms in relation to management and environmental factors. Preslia, 78, 235–252. [Google Scholar]
  • ter Braak C.J.F. and Šmilauer P., 2002. CANOCO reference manual and CanoDraw for Windows user’s guide: software for Canonical Community Ordination (version 4.5), Microcomputer Power, Ithaca, New York, 500 p. [Google Scholar]
  • Van der Maarel E., 1979. Transformation of cover-abundance values in phytosociology and its effects on community similarity. Vegetatio, 39, 97–114. [CrossRef] [Google Scholar]
  • Vilmundardóttir O.K., Magnússon B., Gísladóttir G. andThorsteinsson Th., 2010. Shoreline erosion and aeolian deposition along a recently formed hydro-electric reservoir, Blöndulón, Iceland. Geomorphology, 114, 542–555. [CrossRef] [Google Scholar]
  • Wantzen K.M., Rothhaupt K.-O., Mörtl M., Cantonati M., G.-Tóth L. andFischer P., 2008. Ecological effects of water-level fluctuations in lakes: an urgent issue. Hydrobiologia, 613, 1–4. [CrossRef] [Google Scholar]
  • Weisner S.E.B. andEkstam B., 1993. Influence of germination time on juvenile performance of Phragmites australis on temporarily exposed bottoms – implications for the colonization of lake beds. Aquat. Bot., 45, 107–118. [CrossRef] [Google Scholar]
  • Welch N.H., Butler M.G., Carlson T.J. andHanson M.A., 2003. Changes in macrophyte community structure in Lake Christina (Minnesota), a large shallow lake, following biomanipulation. Aquat. Bot., 75, 323–337. [CrossRef] [Google Scholar]
  • Wetzel R.G., 1983. Limnology, second edition, Saunders College Publishing, Forth Worth, 767 p. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.