Issue
Knowl. Manag. Aquat. Ecosyst.
Number 426, 2025
Riparian ecology and management
Article Number 3
Number of page(s) 14
DOI https://doi.org/10.1051/kmae/2024025
Published online 15 January 2025
  • Aarts BGW, Van Den Brink FWB, Nienhuis PH. 2004. Habitat loss as the main cause of the slow recovery of fish faunas of regulated large rivers in Europe: the transversal floodplain gradient. River Res Appl 20: 3–23. [CrossRef] [Google Scholar]
  • Abdel-tawwab M. 2005. The effect of artificial vegetation density on growth and growth related parameters of Nile Tilapia, Oreochromis niloticus (L.) Fry. Turk J Fish Aquat Sci 5: 63–68. [Google Scholar]
  • Anderson KA, Beitinger TL, Zimmerman EG. 1983. Forage fish assemblages in the Brazos river upstream and downstream from Possum Kingdom Reservoir, Texas. J Freshw Ecol 2: 81–88. [CrossRef] [Google Scholar]
  • Baumann JR, Oakley NC, McRae BJ. 2016. Evaluating the effectiveness of artificial fish habitat designs in turbid reservoirs using sonar imagery. North Am J Fish Manag 36: 1437–1444. [CrossRef] [Google Scholar]
  • Brabrand Å, Faafeng B. 1993. Habitat shift in roach (Rutilus rutilus) induced by pikeperch (Stizostedion lucioperca) introduction: predation risk versus pelagic behaviour. Oecologia 95: 38–46. [CrossRef] [PubMed] [Google Scholar]
  • Bray JR, Curtis JT. 1957. An ordination of the upland forest communities of Southern Wisconsin. Ecol Monogr 27: 326–349. [Google Scholar]
  • Brooks ME, Kristensen K, Benthem KJ, van, Magnusson A, Berg CW, Nielsen A, Skaug HJ, Mächler M, Bolker BM. 2017. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J 9: 378. [CrossRef] [Google Scholar]
  • Brosse S, Laffaille P, Gabas S, Lek S. 2001. Is scuba sampling a relevant method to study fish microhabitat in lakes? Examples and comparisons for three European species. Ecol Freshw Fish 10: 138–146. [CrossRef] [Google Scholar]
  • Bry C. 1996. Role of vegetation in the life cycle of pike. Pike: biology and exploitation. Springer, pp. 45–67. [Google Scholar]
  • Carmignani JR, Roy AH, Hazelton PD, Giard H. 2019. Annual winter water level drawdowns limit shallow-water mussel densities in small lakes. Freshw Biol 64: 1519–1533. [CrossRef] [Google Scholar]
  • Cazzanelli M, Warming TP, Christoffersen KS. 2008. Emergent and floating-leaved macrophytes as refuge for zooplankton in a eutrophic temperate lake without submerged vegetation. Hydrobiologia 605: 113–122. [CrossRef] [Google Scholar]
  • Čech M, Peterka J, Říha M, Jůza T, Kubečka J. 2009. Distribution of egg strands of perch (Perca fluviatilis L.) with respect to depth and spawning substrate. Hydrobiologia 630: 105–114. [CrossRef] [Google Scholar]
  • Chancerel F. 2003. Le brochet, Biologie et gestion. CSP Ed., Collection Mise au point. [Google Scholar]
  • Chappaz R, Doucende D, Barthelemy R. 1998. Patterns of change in zooplankton community structures and the selective feeding of Bleak, Alburnus alburnus (L.) in the Serre Ponçon dam between 1980 and 1996. [Google Scholar]
  • Chick JH, Mlvor CC. 1997. Habitat selection by three littoral zone fishes: effects of predation pressure, plant density and macrophyte type. Ecol Freshw Fish 6: 27–35. [CrossRef] [Google Scholar]
  • Clarke KR. 1993. Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18: 117–143. [CrossRef] [Google Scholar]
  • Conover WJ, Conover WJ. 1999. Practical nonparametric statistics. New York, NY/Weinheim: Wiley, 584p. [Google Scholar]
  • Cook MF, Bergersen EP. 1988. Movements, habitat selection, and activity periods of northern pike in Eleven Mile Reservoir, Colorado. Trans Am Fish Soc 117: 495–502. [CrossRef] [Google Scholar]
  • Coops H, Beklioglu M, Crisman TL. 2003. The role of water-level fluctuations in shallow lake ecosystems − workshop conclusions. Hydrobiologia 506–509: 23–27. [CrossRef] [Google Scholar]
  • Corse E, Costedoat C, Chappaz R, Pech N, Martin J-F, Gilles A. 2010. A PCR-based method for diet analysis in freshwater organisms using 18S rDNA barcoding on faeces. Mol Ecol Resour 10: 96–108. [CrossRef] [PubMed] [Google Scholar]
  • Cremona F, Planas D, Lucotte M. 2008. Biomass and composition of macroinvertebrate communities associated with different types of macrophyte architectures and habitats in a large fluvial lake. Fundam Appl Limnol 171: 119–130. [CrossRef] [Google Scholar]
  • Czarnecka M. 2016. Coarse woody debris in temperate littoral zones: implications for biodiversity, food webs and lake management. Hydrobiologia 767: 13–25. [CrossRef] [Google Scholar]
  • De Moraes KR, Souza AT, Muška M, Hladík M, Čtvrtlíková M, Draštík V, Kolařík T, Kučerová A, Krolová M, Sajdlová Z, Šmejkal M, Kubečka J. 2023. Artificial floating islands: a promising tool to support juvenile fish in lacustrine systems. Hydrobiologia 850: 1969–1984. [CrossRef] [Google Scholar]
  • Dinno A. 2015. conover.test: Conover-Iman Test of Multiple Comparisons Using Rank Sums. 1.1.6. [Google Scholar]
  • Dörner H, Berg S, Jacobsen L, Hülsmann S, Brojerg M, Wagner A. 2003. The feeding behaviour of large perch Perca fluviatilis (L.) in relation to food availability: a comparative study. Hydrobiologia 506–509: 427–434. [CrossRef] [Google Scholar]
  • Evtimova VV, Donohue I. 2016. Water-level fluctuations regulate the structure and functioning of natural lakes. Freshw Biol 61: 251–264. [CrossRef] [Google Scholar]
  • Farrell JM. Reproductive Success of Sympatric Northern Pike and Muskellunge in an Upper St. Lawrence River Bay. [Google Scholar]
  • Feger BT, Spier TW. 2010. Evaluation of artificial PVC pipe structures as fish habitat in Spring Lake, Western Illinois, USA. Lakes Reserv Sci Policy Manag Sustain Use 15: 335–340. [Google Scholar]
  • Fischer JR, Quist MC. 2014. Gear and seasonal bias associated with abundance and size structure estimates for lentic freshwater fishes. J Fish Wildl Manag 5: 394–412. [CrossRef] [Google Scholar]
  • Fischer P, Öhl U. 2005. Effects of water-level fluctuations on the littoral benthic fish community in lakes: a mesocosm experiment. Behav Ecol 16: 741–746. [CrossRef] [Google Scholar]
  • Fox J, Weisberg S, Price B. 2001. car: Companion to Applied Regression. 3: 1–2. [Google Scholar]
  • Furey PC, Nordin RN, Mazumder A. 2004. Water level drawdown affects physical and biogeochemical properties of littoral sediments of a reservoir and a natural lake. Lake Reserv Manag 20: 280–295. [CrossRef] [Google Scholar]
  • Gasith A, Goren M. 2009. Habitat availability, reproduction and population dynamics of the fresh water blenny Salaria fluviatilis (asso, 1801) in Lake Kinneret, Israel. Electron J Ichthyol 2: 34–46. [Google Scholar]
  • Gillet C. 1989. Réalisation de frayères artificielles flottantes pour les poissons lacustres. Hydroécolog Appl 1: 145–193. [CrossRef] [EDP Sciences] [Google Scholar]
  • Grabowski TB, Isely JJ. 2007. Effects of flow fluctuations on the spawning habitat of a riverine fish. Southeast Nat 6: 471–478. [CrossRef] [Google Scholar]
  • Harmelin-Vivien ML, Harmelin JG, Chauvet C, Mellon-Duval C, Galzin R, Lejeune P, Barnabé G, Blanc F, Chevalier R, Duclerc J, Lasserre G. 1985. Evaluation visuelle des peuplements et populations de poissons: méthodes et problèmes. Rev DÉcologie Terre Vie 40: 467–539. [CrossRef] [Google Scholar]
  • Hartig F, Lohse L. 2022. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models. [Google Scholar]
  • Haxton TJ, Findlay CS. 2009. Variation in large-bodied fish-community structure and abundance in relation to water-management regime in a large regulated river. J Fish Biol 74: 2216–2238. [CrossRef] [PubMed] [Google Scholar]
  • Hirsch PE, Schillinger S, Weigt H, Burkhardt-Holm P. 2014. A hydro-economic model for water level fluctuations: combining limnology with economics for sustainable development of hydropower. Pandit MK, ed. PLoS ONE 9: e114889. [CrossRef] [PubMed] [Google Scholar]
  • Holm S. 1979. A simple sequentially rejective multiple test procedure. Scand J Stat 6: 65–70. [Google Scholar]
  • Huang X, Zhao F, Song C, Gao Y, Geng Z, Zhuang P. 2017. Effects of stereoscopic artificial floating wetlands on nekton abundance and biomass in the Yangtze Estuary. Chemosphere 183: 510–518. [CrossRef] [PubMed] [Google Scholar]
  • Iman RL, Conover WJ. 1979. The use of the rank transform in regression. Technometrics 21: 499–509. [CrossRef] [Google Scholar]
  • Imbrock F, Appenzeller A, Eckmann R. 1996. Diel and seasonal distribution of perch in Lake Constance: a hydroacoustic study and in situ observations. J Fish Biol 49: 1–13. [Google Scholar]
  • Jacobsen L, Berg S, Baktoft H, Skov C. 2015. Behavioural strategy of large perch Perca fluviatilis varies between a mesotrophic and a hypereutrophic lake. J Fish Biol 86: 1016–1029. [CrossRef] [PubMed] [Google Scholar]
  • Järvalt A, Krause T, Palm A. 2005. Diel migration and spatial distribution of fish in a small stratified lake. In Ott I, Kõiv T, eds. Lake Verevi, Estonia — A Highly Stratified Hypertrophic Lake, Springer Netherlands, Dordrecht. 197–203. [Google Scholar]
  • Jaschinski S, Brepohl DC, Sommer U. 2011. The trophic importance of epiphytic algae in a freshwater macrophyte system (Potamogeton perfoliatus L.): stable isotope and fatty acid analyses. Aquat Sci 73: 91–101. [CrossRef] [Google Scholar]
  • Kahl U, Hülsmann S, Radke RJ, Benndorf J. 2008. The impact of water level fluctuations on the year class strength of roach: implications for fish stock management. Limnologica 38: 258–268. [CrossRef] [Google Scholar]
  • Kelch DO, Snyder FL, Reutter JM. 1999. Artificial Reefs in Lake Erie: Biological Impacts of Habitat Alteration. In : Am. Fish. Soc. Symp. 1999: 335–347. [Google Scholar]
  • Laporte M, Claude J, Berrebi P, Perret P, Magnan P. 2016. Shape plasticity in response to water velocity in the freshwater blenny Salaria fluviatilis. J Fish Biol 88: 1191–1203. [CrossRef] [PubMed] [Google Scholar]
  • Leira M, Cantonati M. 2008. Effects of water-level fluctuations on lakes: an annotated bibliography. In Wantzen KM, Rothhaupt K-O, Mörtl M, Cantonati M, −Tóth LG, Fischer P, eds. Ecological Effects of Water-Level Fluctuations in Lakes. Netherlands, Dordrecht: Springer, pp. 171–184. [Google Scholar]
  • Lenth RV. 2017. emmeans: Estimated Marginal Means, aka Least-Squares Means. 1.10.3. [Google Scholar]
  • Lewin W-C, Okun N, Mehner T. 2004. Determinants of the distribution of juvenile fish in the littoral area of a shallow lake. Freshw Biol 49: 410–424. [CrossRef] [Google Scholar]
  • Lindén A, Mäntyniemi S. 2011. Using the negative binomial distribution to model overdispersion in ecological count data. Ecology 92: 1414–1421. [CrossRef] [PubMed] [Google Scholar]
  • Logez M, Roy R, Tissot L, Argillier C. 2016. Effects of water-level fluctuations on the environmental characteristics and fish-environment relationships in the littoral zone of a reservoir. Fundam Appl Limnol 189: 37–49. [CrossRef] [Google Scholar]
  • Maciej Gliwicz Z, Slon J, Szynkarczyk I. 2006. Trading safety for food: evidence from gut contents in roach and bleak captured at different distances offshore from their daytime littoral refuge. Freshw Biol 51: 823–839. [CrossRef] [Google Scholar]
  • Maday A, Matern S, Monk CT, Klefoth T, Wolter C, Arlinghaus R. 2023. Seasonal and diurnal patterns of littoral microhabitat use by fish in gravel pit lakes, with special reference to supplemented deadwood brush piles. Hydrobiologia 850: 1557–1581. [CrossRef] [Google Scholar]
  • Massicotte P, Bertolo A, Brodeur P, Hudon C, Mingelbier M, Magnan P. 2015. Influence of the aquatic vegetation landscape on larval fish abundance. J Gt Lakes Res 41: 873–880. [CrossRef] [Google Scholar]
  • Mastrorillo S, Dauba F, Belaud A. 1996. Utilisation des microhabitats par le vairon, le goujon et la loche franche dans trois rivières du sud-ouest de la France. Ann Limnol − Int J Limnol 32: 185–195. [CrossRef] [EDP Sciences] [Google Scholar]
  • McDowell CP. 2012. Winter Drawdown Effects on Swim-up Date and Growth Rate of Age-0 Fishes in Connecticut. University of Connecticut. [Google Scholar]
  • Meerhoff M, de los Ángeles González-Sagrario M. 2022. Habitat complexity in shallow lakes and ponds: importance, threats, and potential for restoration. Hydrobiologia 849: 3737–3760. [Google Scholar]
  • Moring JR, Nicholson PH. 1994. Evaluation of Three Types of Artificial Habitats for Fishes in a Freshwater Pond in Maine, USA. [Google Scholar]
  • Nakamura K, Tsukidate M, Shimatani Y. 1997. Characteristic of Ecosystem of an Artificial Vegetated Floating Island. WIT Transactions on Ecology and the Environment WIT Press 22. [Google Scholar]
  • Nakamura K, Mueller G. 2008. Review of the Performance of the Artificial Floating Island as a Restoration Tool for Aquatic Environments. World Environmental and Water Resources Congress 2008, American Society of Civil Engineers, Honolulu, Hawaii, United States, 1–10. [Google Scholar]
  • Ojanguren AF, Braña F. 2003. Effects of size and morphology on swimming performance in juvenile brown trout (Salmo trutta L.). Ecol Freshwater Fish 12: 241–246. [CrossRef] [Google Scholar]
  • Oksanen J, Simpson GL, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Solymos P, Stevens MHH, Szoecs E, Wagner H, Barbour M, Bedward M, Bolker B, Borcard D, Carvalho G, Chirico M, De Caceres M, Durand S, Evangelista HBA, FitzJohn R, Friendly M, Furneaux B, Hannigan G, Hill MO, Lahti L, McGlinn D, Ouellette M-H, Ribeiro Cunha E, Smith T, Stier A, Ter Braak CJF, Weedon J. 2001. vegan: Community Ecology Package. 2.6–6.1. [Google Scholar]
  • Okun N, Mehner T. 2005. Distribution and feeding of juvenile fish on invertebrates in littoral reed (Phragmites) stands. Ecol Freshw Fish 14: 139–149. [CrossRef] [Google Scholar]
  • Pedicillo G, Merulli F, Carosi A, Viali P, Lorenzoni M. 2008. The use of artificial spawning substrates as media to support the reproduction of Eurasian perch in Lake Piediluco. Hydrobiologia 609: 219–223. [CrossRef] [Google Scholar]
  • Persson L, Eklov P. 1995. Prey refuges affecting interactions between piscivorous Perch and Juvenile Perch and Roach. Ecology 76: 70–81. [CrossRef] [Google Scholar]
  • Plichard L, Capra H, Mons R, Pella H, Lamouroux N. 2017. Comparing electrofishing and snorkelling for characterizing fish assemblages over time and space. Can J Fish Aquat Sci 74: 75–86. [CrossRef] [Google Scholar]
  • Prashant, Billore SK. 2020. Macroinvertebrates associated with artificial floating islands installed in River Kshipra for water quality improvement. Water Sci Technol 81: 1242–1249. [CrossRef] [PubMed] [Google Scholar]
  • Prchalová M, Kubečka J, Vašek M, Peterka J, Sed’a J, Jůza T, Říha M, Jarolím O, Tušer M, Kratochvíl M, ČEch M, Draštík V, Frouzová J, Hohausová E. 2008. Distribution patterns of fishes in a canyon-shaped reservoir. J Fish Biol 73: 54–78. [CrossRef] [Google Scholar]
  • Prchalová M, Kubečka J, Čech M, Frouzová J, Draštík V, Hohausová E, Jůza T, Kratochvíl M, Matěna J, Peterka J, Říha M, Tušer M, Vašek M. 2009. The effect of depth, distance from dam and habitat on spatial distribution of fish in an artificial reservoir. Ecol Freshw Fish 18: 247–260. [CrossRef] [Google Scholar]
  • Říha M, Kubečka J, Prchalová M, Mrkvička T, Čech M, Draštík V, Frouzová J, Hohausová E, Jůza T, Kratochvíl M, Peterka J, Tušer M, Vašek M. 2011. The influence of diel period on fish assemblage in the unstructured littoral of reservoirs. Fish Manag Ecol 18: 339–347. [CrossRef] [Google Scholar]
  • Rozas LP, Odum WE. 1988. Occupation of submerged aquatic vegetation by fishes: testing the roles of food and refuge. Oecologia 77: 101–106. [CrossRef] [PubMed] [Google Scholar]
  • Sala MM, Güde H. 2006. Seasonal dynamics of pelagic and benthic (littoral and profundal) bacterial abundances and activities in a deep prealpine lake (L. Constance). Arch Für Hydrobiol 167: 351–369. [CrossRef] [Google Scholar]
  • Salmon Q, Colas F, Westrelin S, Dublon J, Baudoin J-M. 2022. Floating Littoral Zone (FLOLIZ): A solution to sustain macroinvertebrate communities in regulated lakes? Ecol Eng 176: 106509. [CrossRef] [Google Scholar]
  • Salmon Q, Westrelin S, Dublon J, Abadie E, Baudoin J-M. 2024. Artificial floating littoral zones: a promising nursery to support Pike (Esox lucius) in reservoirs. Int J Limnol 60: 22. [CrossRef] [EDP Sciences] [Google Scholar]
  • Sandlund OT, Museth J, Øistad S. 2016. Migration, growth patterns, and diet of pike (Esox lucius) in a river reservoir and its inflowing river. Fish Res 173: 53–60. [Google Scholar]
  • Santos LN, Araújo FG, Brotto DS. 2008. Artificial structures as tools for fish habitat rehabilitation in a neotropical reservoir. Aquat Conserv Mar Freshw Ecosyst 18: 896–908. [CrossRef] [Google Scholar]
  • Santos LN, García-Berthou E, Agostinho AA, Latini JD. 2011. Fish colonization of artificial reefs in a large Neotropical reservoir: material type and successional changes. Ecol Appl 21: 251–262. [CrossRef] [PubMed] [Google Scholar]
  • Sellers KF, Premeaux B. 2021. Conway-Maxwell-Poisson regression models for dispersed count data. WIREs Comput Stat 13: e1533. [CrossRef] [Google Scholar]
  • Schou MO, Risholt C, Lauridsen TL, Søndergaard M, Grønkjær P, Jacobsen L, Berg S, Skov C, Brucet S, Jeppesen E. 2009. Restoring lakes by using artificial plant beds habitat selection of zooplankton in a clear and a turbid shallow lake. Freshw Biol 54: 1520–1531. [CrossRef] [Google Scholar]
  • Shoup DE, Boswell KM, Wahl DH. 2014. Diel Littoral-Pelagic Movements by Juvenile Bluegills in a small lake. Trans Am Fish Soc 143: 796–801. [CrossRef] [Google Scholar]
  • Sifa L, Mathias JA. 1987. The critical period of high mortality of larvae fish—a discussion based on current research. Chin J Oceanol Limnol 5: 80–96. [CrossRef] [Google Scholar]
  • Smith C, Douglas A, Jurajda P. 2001. Oviposition site selection and embryo mortality in perch. J Fish Biol 58: 880–882. [CrossRef] [Google Scholar]
  • Sutela T, Vehanen T, Rask M. 2011. Assessment of the ecological status of regulated lakes: stressor-specific metrics from littoral fish assemblages. Hydrobiologia 675: 55–64. [CrossRef] [Google Scholar]
  • Sutela T, Aroviita J, Keto A. 2013. Assessing ecological status of regulated lakes with littoral macrophyte, macroinvertebrate and fish assemblages. Ecol Indic 24: 185–192. [CrossRef] [Google Scholar]
  • Swierzowski A. 2000. The relationship between the spatial distribution of fish, zooplankton and other environmental parameters in the Solina reservoir, Poland. Aquat Living Resour 13: 373–377. [CrossRef] [Google Scholar]
  • Thomaz SM, Cunha ER da. 2010. The role of macrophytes in habitat structuring in aquatic ecosystems: methods of measurement, causes and consequences on animal assemblages’ composition and biodiversity. Acta Limnolog Brasiliensia 22: 218–236. [CrossRef] [Google Scholar]
  • Trussart S, Messier D, Roquet V, Aki S. 2002. Hydropower projects: a review of most effective mitigation measures. Energy Policy 30: 1251–1259. [CrossRef] [Google Scholar]
  • Tudorache C, Viaene P, Blust R, Vereecken H, De Boeck G. 2008. A comparison of swimming capacity and energy use in seven European freshwater fish species. Ecol Freshw Fish 17: 284–291. [CrossRef] [Google Scholar]
  • Tundisi JG, Matsumura-Tundisi T. 2003. Integration of research and management in optimizing multiple uses of reservoirs: the experience in South America and Brazilian case studies. In: Martens K, ed. Aquatic Biodiversity: A Celebratory Volume in Honour of Henri J. Dumont. Netherlands, Dordrecht: Springer, pp. 231–242. [CrossRef] [Google Scholar]
  • Turner LJ, Mackay WC. 1985. Use of Visual Census for Estimating Population Size in Northern Pike (Esox lucius). https://cdnsciencepub.com/doi/abs/10.1139/f85-231 (accessed July 22, 2024). [Google Scholar]
  • Walters DA, Lynch WE, Johnson DL. 1991. How depth and interstice size of artificial structures influence fish attraction. North Am J Fish Manag 11: 319–329. [CrossRef] [Google Scholar]
  • Wang N, Eckmann R. 1994. Distribution of perch (Perca fluviatilis L.) during their first year of life in Lake Constance. Hydrobiologia 277: 135–143. [CrossRef] [Google Scholar]
  • Westrelin S, Cucherousset J, Roy R, Tissot L, Santoul F, Argillier C. 2022. Habitat partitioning among three predatory fish in a temperate reservoir. Ecol Freshw Fish 31: 129–142. [CrossRef] [Google Scholar]
  • Winfield IJ. 2004. Fish in the littoral zone: ecology, threats and management. Limnologica 34: 124–131. [CrossRef] [Google Scholar]
  • Wolcox DA, Meeker JE. 1992. Implications for faunal habitat related to altered macrophyte structure in regulated lakes in northern Minnesota. Wetlands 12: 192–203. [CrossRef] [Google Scholar]
  • Wolter C. 2010. Functional vs scenic restoration − challenges to improve fish and fisheries in urban waters. Fish Manag Ecol 17: 176–185. [CrossRef] [Google Scholar]
  • Yeh N, Yeh P, Chang Y-H. 2015. Artificial floating islands for environmental improvement. Renew Sustain Energy Rev 47: 616–622. [CrossRef] [Google Scholar]
  • Zohary T, Gasith A. 2014. The Littoral Zone. In Zohary T, Sukenik A, Berman T, Nishri A, eds. Lake Kinneret. Dordrecht: Springer Netherlands, pp. 517–532. [Google Scholar]
  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM. 2009. GLM and GAM for count data. In Zuur AF, Ieno EN, Walker N, Saveliev AA, Smith GM, eds. Mixed effects models and extensions in ecology with R. New York, NY: Springer, pp. 209–243. [Google Scholar]
  • Zweimuller I. 1995. Microhabitat use by two small benthic stream fish in a 2nd order stream. Hydrobiologia 303: 125–137. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.