Conservation genetics
Open Access
Knowl. Manag. Aquat. Ecosyst.
Number 424, 2023
Conservation genetics
Article Number 7
Number of page(s) 15
Published online 29 March 2023
  • Adamack AT, Gruber B. 2014. PopGenReport: simplifying basic population genetic analyses in R. Methods Ecol Evol 5: 384–387. [CrossRef] [Google Scholar]
  • Baer J, George V, Hanfland S, Lemcke R, Meyer L, Zahn S. 2007. Gute fachliche Praxis fischereilicher Besatzmaßnahmen. Schriftenreihe des Verbandes Deutscher Fischereiverwaltungsbeamter und Fischereiwissenschaftler e.V.: 14. [Google Scholar]
  • Barnosky AD, Matzke N, Tomiya S, Wogan GOU, Swartz B, Quental TB, Marshall C, McGuire JL, Lindsey EL, Maguire KC, Mersey B, Ferrer EA. 2011. Has the Earth's sixth mass extinction already arrived? Nature 471: 51–57. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Brookfield JFY. 1996. A simple new method for estimating null allele frequency from heterozygote deficiency. Mol Ecol 5: 453–455. [CrossRef] [PubMed] [Google Scholar]
  • Cortey M, Garcia-Marin J-L. 2002. Evidence for phylogeographically informative sequence variation in the mitochondrial control region of Atlantic brown trout. J Fish Biol 60: 1058–1063. [CrossRef] [Google Scholar]
  • Cortey M, Vera M, Pla C, Garcia-Marin J-L. 2009. Northern and Southern expansions of Atlantic brown trout (Salmo trutta) populations during the Pleistocene. Biol J Linn Soc 97: 904–917. [CrossRef] [Google Scholar]
  • Darwall W, Bremerich V, De Wever A, Dell AI, Freyhof J, Gessner MO, Grossart H-P, Harrison I, Irvine K, Jähnig SC, Jeschke JM, Lee JJ, Lu C, Lewandowska AM, Monaghan MT, Nejstgaard JC, Patricio H, Schmidt-Kloiber A, Stuart SN, Thieme M, Tockner K, Turak E, Weyl O. 2018. The Alliance for Freshwater Life: A global call to unite efforts for freshwater biodiversity science and conservation. Aquat Conserv Mar Freshw Ecosyst 28: 1015–1022. [CrossRef] [Google Scholar]
  • Deinet AS, Scott-Gatty K, Rotton H, Twardek WM, Marconi V, McRae L, Baumgartner LJ, Brink K, Claussen JE, Cooke SJ, Darwall W, Eriksson BK, Garcia de Leaniz C, Hogan Z, Royte J, Silva LGM, Thieme ML, Tickner D, Waldman J, Wanningen H, Weyl OLF, Berkhuysen. 2020. Living Planet Index (LPI) for migratory freshwater fish. World Fish Migration Foundation, The Netherlands. [Google Scholar]
  • Des Roches S, Pendleton LH, Shapiro B, Palkovacs EP. 2021. Conserving intraspecific variation for nature's contributions to people. Nat Ecol Evol 5: 574–582. [CrossRef] [PubMed] [Google Scholar]
  • Dray S, Dufour A-B. 2007. The ade4 package: Implementing the duality diagram for ecologists. J Stat Softw 22: 1–20. [CrossRef] [Google Scholar]
  • Egger B, Wiegleb J, Seidel F, Burkhardt-Holm P, Emanuel Hirsch P. 2021. Comparative swimming performance and behaviour of three benthic fish species: The invasive round goby (Neogobius melanostomus), the native bullhead (Cottus gobio), and the native gudgeon (Gobio gobio). Ecol Freshw Fish 30: 391–405. [CrossRef] [Google Scholar]
  • Englbrecht CC, Freyhof J, Nolte A, Rassmann K, Schliewen U, Tautz D. 2000. Phylogeography of the bullhead Cottus gobio (Pisces: Teleostei: Cottidae) suggests a pre-Pleistocene origin of the major central European populations. Mol Ecol 9: 709–722. [CrossRef] [PubMed] [Google Scholar]
  • Fast K, Aguilar A, Nolte AW, Sandel MW. 2017. Complete mitochondrial genomes for Cottus asper, Cottus perifretum, and Cottus rhenanus (Perciformes, Cottidae). Mitochondrial DNA Part B 2: 666–668. [CrossRef] [Google Scholar]
  • Ferguson A. 2006. Genetic impacts of stocking on indigenous brown trout populations. Science Report: SC040071/SR. Environment Agency, Rio House, Waterside Drive, Aztec West, Almondsbury, Bristol, BS32 4UD. [Google Scholar]
  • Fitzpatrick SW, Bradburd GS, Kremer CT, Salerno PE, Angeloni LM, Funk WC. 2020. Genomic and Fitness Consequences of Genetic Rescue in Wild Populations. Curr Biol 30: 517–522.e5. [CrossRef] [PubMed] [Google Scholar]
  • Freyhof J. 2011. Cottus gobio. The IUCN Red List of Threatened Species 2011: e.T5445 A97802083. [Google Scholar]
  • Freyhof J, Kottelat M. 2008a. Cottus rhenanus. The IUCN Red List of Threatend Species 2008: e.T135710 A4188537. [Google Scholar]
  • Freyhof J, Kottelat M. 2008b. Cottus perifretum. The IUCN Red List of Threatend Species 2008: e.T135511 A4135554. [Google Scholar]
  • Freyhof J, Kottelat M, Nolte AW. 2005. Taxonomic diversity of European Cottus with description of eight new species (Teleostei: Cottidae). Ichthyol Explor Freshw 16: 107–172. [Google Scholar]
  • Hale R, Morrongiello JR, Swearer SE. 2016. Evolutionary traps and range shifts in a rapidly changing world. Biol Lett 12: 20160003. [CrossRef] [PubMed] [Google Scholar]
  • Hoban S, Archer FI, Bertola LD, Bragg JG, Breed MF, Bruford MW, Coleman MA, Ekblom R, Funk WC, Grueber CE, Hand BK, Jaffé R, Jensen E, Johnson JS, Kershaw F, Liggins L, MacDonald AJ, Mergeay J, Miller JM, Muller-Karger F, O'Brien D, Paz-Vinas I, Potter KM, Razgour O, Vernesi C, Hunter ME. 2022. Global genetic diversity status and trends: towards a suite of Essential Biodiversity Variables (EBVs) for genetic composition. Biol Rev 97: 1511–1538. [CrossRef] [PubMed] [Google Scholar]
  • Jombart T. 2008. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24: 1403–1405. [CrossRef] [PubMed] [Google Scholar]
  • Jombart T, Ahmed I. 2011. adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27: 3070–3071. [CrossRef] [PubMed] [Google Scholar]
  • Jost L. 2008. GST and its relatives do not measure differentiation. Mol Ecol 17: 4015–4026. [CrossRef] [PubMed] [Google Scholar]
  • Junker J, Peter A, Wagner CE, Mwaiko S, Germann B, Seehausen O, Keller I. 2012. River fragmentation increases localized population genetic structure and enhances asymmetry of dispersal in bullhead (Cottus gobio). Conserv Genet 13: 545–556. [CrossRef] [Google Scholar]
  • Kalinowski ST. 2004. Counting Alleles with Rarefaction: Private Alleles and Hierarchical Sampling Designs. Conserv Genet 5: 539–543. [CrossRef] [Google Scholar]
  • Kamvar ZN, Tabima JF, Grünwald NJ, Souza V. 2014. Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2: e 281. [Google Scholar]
  • Kamvar ZN, Brooks JC, Grünwald NJ. 2015. Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality. Front Genet 6: 208. [CrossRef] [PubMed] [Google Scholar]
  • Klütsch CFC, Maduna SN, Polikarpova N, Forfang K, Aspholm PE, Nyman T, Eiken HG, Amundsen P-A., Hagen SB. 2019. Genetic changes caused by restocking and hydroelectric dams in demographically bottlenecked brown trout in a transnational subarctic riverine system. Ecol Evol 9: 6068–6081. [CrossRef] [PubMed] [Google Scholar]
  • Knaepkens G, Bervoets L, Verheyen E, Eens M. 2004. Relationship between population size and genetic diversity in endangered populations of the European bullhead (Cottus gobio): implications for conservation. Biol Conserv 115: 403–410. [CrossRef] [Google Scholar]
  • Kohout J, Jaskova I, Papousek I, Sediva A, Slechta V. 2012. Effects of stocking on the genetic structure of brown trout, Salmo trutta, in Central Europe inferred from mitochondrial and nuclear DNA markers. Fish Manag Ecol 19: 252–263. [CrossRef] [Google Scholar]
  • Laikre L. 1999. Conservation Genetic Management of Brown Trout (Salmo trutta) in Europe. Concreted action on identification, management and exploitation of genetic resources in the brown trout (Salmo trutta) (TROUTCONCERT; EU FAIR CT97-3882). [Google Scholar]
  • Leigh DM, Hendry AP, Vázquez-Domínguez E, Friesen VL. 2019. Estimated six per cent loss of genetic variation in wild populations since the industrial revolution. Evol Appl 12: 1505–1512. [CrossRef] [PubMed] [Google Scholar]
  • Lerceteau-Kohler E, Schliewen U, Kopun T, Weiss S. 2013. Genetic variation in brown trout Salmo trutta across the Danube, Rhine, and Elbe headwaters: a failure of the phylogeographic paradigm? BMC Evol Biol 13: 176. [CrossRef] [PubMed] [Google Scholar]
  • Nei M, Tajima F. 1981. DNA polymorphism detectable by restriction endonucleases. Genetics 97: 145–163. [Google Scholar]
  • Nolte A, Freyhof J, Stemshorn K, Tautz D. 2005. An invasive lineage of sculpins, Cottus sp. (Pisces, Teleostei) in the Rhine with new habitat adaptations has originated from hybridization between old phylogeographic groups. Proc R Soc B-Biol Sci 272: 2379–2387. [CrossRef] [PubMed] [Google Scholar]
  • Paradis E. 2010. pegas: an R package for population genetics with an integrated-modular approach. Bioinformatics 26: 419–420. [CrossRef] [PubMed] [Google Scholar]
  • R Core Team. 2021. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. [Google Scholar]
  • Rossi AR, Talarico L, Petrosino G, Crescenzo S, Tancioni L. 2022. Conservation genetics of mediterranean brown trout in central italy (Latium): A multi-marker approach. Water 14: 937. [Google Scholar]
  • Schmidt T, Zagars M, Roze A, Schulz R. 2017. Genetic diversity of a Daugava basin brown trout (Salmo trutta) brood stock. Knowl Manag Aquat Ecosyst 418: 55. [CrossRef] [EDP Sciences] [Google Scholar]
  • Simon L. 2003. Leitarten im Biosphärenreservat Pfälzerwald-Nordvogesen. [Google Scholar]
  • Šlechtová V, Bohlen J, Freyhof J, Persat H, Delmastro GB. 2004. The Alps as barrier to dispersal in cold-adapted freshwater fishes? Phylogeographic history and taxonomic status of the bullhead in the Adriatic freshwater drainage. Mol Phylogenet Evol 33: 225–239. [CrossRef] [PubMed] [Google Scholar]
  • Stemshorn KC, Reed FA, Nolte AW, Tautz D. 2011. Rapid formation of distinct hybrid lineages after secondary contact of two fish species (Cottus sp.). Mol Ecol 20: 1475–1491. [CrossRef] [PubMed] [Google Scholar]
  • Strayer DL, Dudgeon D. 2010. Freshwater biodiversity conservation: recent progress and future challenges. J North Am Benthol Soc 29: 344–358. [CrossRef] [Google Scholar]
  • Taugbøl A, Olstad K, Bærum KM, Museth J. 2019. Swimming performance of brown trout and grayling show species-specific responses to changes in temperature. Ecol Freshw Fish 28: 241–246. [CrossRef] [Google Scholar]
  • Tickner D, Opperman JJ, Abell R, Acreman M, Arthington AH, Bunn SE, Cooke SJ, Dalton J, Darwall W, Edwards G, Harrison I, Hughes K, Jones T, Leclère D, Lynch AJ, Leonard P, McClain ME, Muruven D, Olden JD, Ormerod SJ, Robinson J, Tharme RE, Thieme M, Tockner K, Wright M, Young L. 2020. Bending the Curve of Global Freshwater Biodiversity Loss: An Emergency Recovery Plan. BioScience 70: 330–342. [CrossRef] [PubMed] [Google Scholar]
  • Volckaert FAM, Hänfling B, Hellemans B, Carvalho GR. 2002. Timing of the population dynamics of bullhead Cottus gobio (Teleostei: Cottidae) during the Pleistocene. J Evol Biol 15: 930–944. [CrossRef] [Google Scholar]
  • Winter DJ. 2012. mmod: an R library for the calculation of population differentiation statistics. Mol Ecol Resour 12: 1158–1160. [CrossRef] [PubMed] [Google Scholar]
  • Yokoyama R, Goto A. 2005. Evolutionary history of freshwater sculpins, genus Cottus (Teleostei; Cottidae) and related taxa, as inferred from mitochondrial DNA phylogeny. Mol Phylogenet Evol 36: 654–668. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.