Knowl. Manag. Aquat. Ecosyst.
Number 424, 2023
Anthropogenic impact on freshwater habitats, communities and ecosystem functioning
Article Number 4
Number of page(s) 9
Published online 07 February 2023
  • Agah H, Leermakers M, Elskens M, Fatemi SMR, Baeyens W. 2009. Accumulation of trace metals in the muscle and liver tissues of five fish species from the Persian Gulf. Environ Monit Assess 157: 499–514. [CrossRef] [PubMed] [Google Scholar]
  • Anderson J, Scrimgeour G, Palace V, Suitor M, Wilcockson J. 2017. Quantifying elements in Arctic grayling and bull trout in the South Nahanni River watershed, Northwest Territories, using nonlethal tissue samples. N Am J Fish Manag 37: 50–63. [CrossRef] [Google Scholar]
  • Baker RF, Blanchfield PJ, Paterson MJ, Flett RJ, Wesson L. 2004. Evaluation of nonlethal methods for the analysis of mercury in fish tissue. Trans Am Fish Soc 133: 568–576. [CrossRef] [Google Scholar]
  • Begum A, Mustafa AI, Amin MN, Chowdhury TR, Quraishi SB, Banu N. 2013. Levels of heavy metals in tissues of shingi fish (Heteropneustes fossilis) from Buriganga River, Bangladesh. Environ Monit Assess 185: 5461–5469. [CrossRef] [PubMed] [Google Scholar]
  • Bilton HT. 1975. Factors influencing the formation of scale characters. International North Pacific Fishery Commission Bulletin 32: 102–108. [Google Scholar]
  • Bilton HT, Robins GL. 1971. Effects of starvation, feeding, and light period on circulus formation on scales of young sockeye salmon (Onchorhyncus nerka). J Fish Res Board Can 28: 1749–1755. [CrossRef] [Google Scholar]
  • Carvalho CS, Fernandes MN. 2008. Effect of copper on liver key enzymes of anaerobic glucose metabolism from freshwater tropical fish Prochilodus lineatus. Comp Biochem Physiol 51A: 437–442. [CrossRef] [Google Scholar]
  • Cerveny D, Roje S, Turek J, Randak T. 2016. Fish fin-clips as a non-lethal approach for biomonitoring of mercury contamination in aquatic environments and human health risk assessment. Chemosphere 163: 290–295. [CrossRef] [PubMed] [Google Scholar]
  • Cizdziel J, Hinners T, Cross C, Pollard J. 2003. Distribution of mercury in the tissues of five species of freshwater fish from Lake Mead, USA. J Environ Monit 5: 802–807. [CrossRef] [PubMed] [Google Scholar]
  • Clarke AD, Telmer KH, Shrimpton JM. 2007. Elemental analysis of otoliths, fin rays and scales: a comparison of bony structures to provide population and life-history information for the Arctic grayling (Thymallus arcticus). Ecol Fresh Fish 16: 354–361. [CrossRef] [Google Scholar]
  • Cobelo-García A, Morán P, Almécija C, Caballero P. 2017. Historical record of trace elements (1983-2007) in scales from Atlantic salmon (Salmo salar): Study of past metal contamination from a copper mine (Ulla River, NW Iberian Peninsula). Chemosphere 188: 18–24. [CrossRef] [PubMed] [Google Scholar]
  • Coillie VR, Rousseau A. 1974. Composition minerale des ecailles du Catostomus commersoni issu de deux milieux differents: etude par microscopie electronique and analytique. J Fish Res Board Can 31: 63–66. [CrossRef] [Google Scholar]
  • Cooley HM, Klaverkamp JF. 2000. Accumulation and distribution of dietary 282 uranium in Lake Whitefish (Coregonus clupeaformis). Aquat Toxicol 48: 477–494. [CrossRef] [PubMed] [Google Scholar]
  • Červenka R, Bednařík A, Komárek J, Ondračková M, Jurajda P, Vítek T, Spurný P. 2011. The relationship between the mercury concentration in fish muscles and scales/fins and its significance. Cent Eur J Chem 9: 1109–1116. [Google Scholar]
  • Dale JM, Freedman B. 1982. Arsenic pollution associated with tailings at an abandoned gold mine in Halifax County, Nova Scotia. Proc N S Inst Sci 32: 337–349. [Google Scholar]
  • Das S, Gupta A. 2013. Accumulation of copper in different tissues and changes in oxygen consumption rate in Indian flying barb, Esomus danricus (Hamilton-Buchanan) exposed to sub-lethal concentrations of copper. Jordan J Biol Sci 6: 21–24. [CrossRef] [MathSciNet] [Google Scholar]
  • Farrell AP, Hodaly AH, Wang S. 2000. Metal analysis of scales taken from arctic grayling. Arch Environ Contam Toxicol 39: 515–522. [CrossRef] [PubMed] [Google Scholar]
  • Fincel MJ, Vandehey JA, Chipps SR. 2012. Non‐lethal sampling of walleye for stable isotope analysis: a comparison of three tissues. Fish Manag Ecol 19: 283–292. [CrossRef] [Google Scholar]
  • Gjerde B, Refstie T. 1988. The effect of fin-clipping on growth rate, survival and sexual maturity of rainbow trout. Aquaculture 73: 383–389. [CrossRef] [Google Scholar]
  • Gremillion PT, Cizdziel JV, Cody NR. 2005. Caudal fin mercury as a non-lethal predictor of fish-muscle mercury. Environ Chem 2: 96–99. [CrossRef] [Google Scholar]
  • Has-Schön E, Bogut I, Strelec I. 2006. Heavy metal profile in five fish species included in human diet, domiciled in the end flow of River Neretva (Croatia). Arch Environ Contam Toxicol 50: 545–551. [CrossRef] [PubMed] [Google Scholar]
  • Havelková M, Dušek L, Némethová D, Poleszczuk G, Svobodová Z. 2008. Comparison of mercury distribution between liver and muscle − a biomonitoring of fish from lightly and heavily contaminated localities. Sens 8: 4095–4109. [CrossRef] [Google Scholar]
  • Jezierska B, Witeska M. 2006. The metal uptake and accumulation in fish living in polluted waters. In Soil and water pollution monitoring, protection and remediation Springer, Dordrecht. 107–114. [Google Scholar]
  • Jovičić K, Nikolić MD, Višnjić-Jeftić Ž, Đikanović V, Skorić S, Stefanović MS, Lenhardt M, Hegediš A, Krpo-Ćetković J, Jarić I. 2014. Mapping differential elemental accumulation in fish tissues: assessment of metal and trace element concentrations in wels catfish (Silurus glanis) from the Danube River by ICP-MS. Environ Sci Pollut Res 22: 3820–3827. [Google Scholar]
  • Kalay M, Canli M. 2000. Elimination of essential (Cu, Zn) and nonessential (Cd, Pb) metals from tissues of a freshwater fish Tilapia zilli. Turk J Zool 24: 429–436. [Google Scholar]
  • Khanna DR, Sarkar P, Gautam A, Bhutiani R. 2007. Fish scales as bio-indicator of water quality of River Ganga. Environ Monit Assess 134: 153–160. [CrossRef] [PubMed] [Google Scholar]
  • Knight A, Bhavsar SP, Branfireun BA, Drouin P, Prashad R, Petro S, Oke M. 2019. A comparison of fish tissue mercury concentrations from homogenized fillet and nonlethal biopsy plugs. J Environ Sci 80: 137–145. [CrossRef] [PubMed] [Google Scholar]
  • Lake JL, Ryba SA, Serbst JR, Libby AD. 2006. Mercury in fish scales as an assessment method for predicting muscle tissue mercury concentrations in largemouth bass. Arch Environ Contam Toxicol 50: 539–544. [CrossRef] [PubMed] [Google Scholar]
  • Łuszczek‐Trojnar E, Nowacki P. 2021. Common carp (Cyprinus carpio L.) scales as a bioindicator reflecting its exposure to heavy metals throughout life. J Appl Ichthyol 37: 235–245. [CrossRef] [Google Scholar]
  • McCloskey M, Yurkowski DJ, Semeniuk CA. 2018. Validating fin tissue as a non-lethal proxy to liver and muscle tissue for stable isotope analysis of yellow perch (Perca flavescens). Isotopes Environ Health Stud 54: 196–208. [CrossRef] [PubMed] [Google Scholar]
  • Milanović A, Kovačević-Majkić J, Milivojević M. 2010. Water quality analysis of Danube river in Serbia: pollution and protection problems. Bull Serb Geogr Soc 90: 47–68. [Google Scholar]
  • Morán P, Cal L, Cobelo-García A, Almécija C, Caballero P, de Leaniz CG. 2018. Historical legacies of river pollution reconstructed from fish scales. Environ Pollut 234: 253–259. [CrossRef] [PubMed] [Google Scholar]
  • Nagajyoti PC, Lee KD, Sreekanth TVM. 2010. Heavy metals, occurrence and toxicity for plants: a review. Environ Chem lett 8: 199–216. [CrossRef] [Google Scholar]
  • Negi RK, Maurya A. 2015. Heavy metal concentrations in tissues of major carp and exotic carp from Bhagwanpur fish pond, India. J Fish Aquat Sci 10: 543–552. [Google Scholar]
  • Official Gazette of RS No. 25/ 2010 and No. 8/2011. Regulation on the quantities of pesticides, metals, metalloids, and other toxic substances, chemoterapeutics, anabolics, and other substances that could be found in food. [Google Scholar]
  • Official Journal of the European Communities. 2001. Commission Regulation (EC) No 466/2001 of 8 March 2001 setting maximum levels for certain contaminants in foodstuffs. [Google Scholar]
  • Othman N, Abd-Kadir A, Zayadi N. 2016. Waste fish scale as cost effective adsorbent in removing zinc and ferum ion in wastewater. ARPN J Eng Appl Sci 11: 1584–1592. [Google Scholar]
  • Pena MMO, Lee J, Thiele D. 1999. A delicate balance: Homeostatic control of copper uptake and distribution. J Nutr 129: 1251–1260. [CrossRef] [PubMed] [Google Scholar]
  • Petrović L. 2015. Spatial development analysis of the Danube region in Serbia in the function of sustainable development. Bull Serbian Geogr Soc 95: 141–158. [Google Scholar]
  • Phillips GR, Lenhart TE, Gregory RW. 1980. Relations between trophic position and mercury accumulation among fishes from the Tongue River Reservoir, Montana. Environ Res 22: 73–80. [CrossRef] [PubMed] [Google Scholar]
  • Rolfhus KR, Sandheinrich MB. 2008. Analysis of fin clips as a nonlethal method for monitoring mercury in fish. Environ Sci Technol 42: 871–877. [CrossRef] [PubMed] [Google Scholar]
  • Rosenthal HL. 1963. Uptake, turnover and transport of bone seeking elements in fishes. Ann. N.Y. Acad. Sci. No. 109. pp. 278–293. [Google Scholar]
  • Sanderson BL, Tran CD, Coe HJ, Pelekis V, Steel EA, Reichert WL. 2009. Nonlethal sampling of fish caudal fins yields valuable stable isotope data for threatened and endangered fishes. Trans Am Fish Soc 138: 1166–1177. [CrossRef] [Google Scholar]
  • Schmitt CJ, Brumbaugh WG. 2007. Evaluation of potentially nonlethal sampling methods for monitoring mercury concentrations in smallmouth bass (Micropterus dolomieu). Arch Environ Contam Toxicol 53: 84–95. [CrossRef] [PubMed] [Google Scholar]
  • Shaikhiev IG, Kraysman NV, Sverguzova SV, Spesivtseva SE, Yarothckina AN. 2020. Fish scales as a biosorbent of pollutants from wastewaters and natural waters (a literature review). Biointerface Res Appl Chem 10: 6893–6905. [CrossRef] [Google Scholar]
  • Smedley PL, Kinniburgh DG. 2002. A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17: 517–568. [CrossRef] [Google Scholar]
  • Sokal RR, Rohlf FJ. 1987. Introduction to biostatistics. New York: Dover Publications. [Google Scholar]
  • Stahl LL, Snyder BD, McCarty HB, Cohen TR, Miller KM, Fernandez MB, Healey JC. 2021. An evaluation of fish tissue monitoring alternatives for mercury and selenium: fish muscle biopsy samples versus homogenized whole fillets. Arch Environ Contam Toxicol 81: 1–19. [Google Scholar]
  • Squadrone S, Prearo M, Brizio P, Gavinelli S, Pellegrino M, Scanzio T, Guarise S, Benedetto A, Abete MC. 2013. Heavy metals distribution in muscle, liver, kidney and gill of European catfish (Silurus glanis) from Italian Rivers. Chemosphere 90: 358–365. [CrossRef] [PubMed] [Google Scholar]
  • Tayel FTR, Shriadah MMA. 1996. Fe, Cu, Mn, Pb and Cd in some fish species from Western Harbour of Alexandria, Eqypt. Bull Natn Inst Oceanogr Fish 22: 85–96. [Google Scholar]
  • Uthe JF. 1971. A simple field technique for obtaining small samples of muscle from living fish. J Fish Res Board Can 28: 1203–1204. [CrossRef] [Google Scholar]
  • Uysal K, Köse E, Bülbül M, Dönmez M, Erdoğan Y, Koyun M, Ömeroğlu Ç, Özmal F. 2009. The comparison of heavy metal accumulation ratios of some fish species in Enne Dame Lake (Kütahya/Turkey). Environ Monit Assess 157: 355–362. [CrossRef] [PubMed] [Google Scholar]
  • Valová Z, Hudcová H, Roche K, Svobodová J, Bernardová I, Jurajda P. 2013. No relationship found between mercury and lead concentrations in muscle and scales of chub Squalius cephalus L. Environ Monit Assess 185: 3359–3368. [CrossRef] [PubMed] [Google Scholar]
  • Vaid V, Hundal SS. 2019. Light microscopic studies to evaluate fish scales as non-invasive indicators of heavy metal-contaminated waters. Environ Monit Assess 191: 1–11. [CrossRef] [Google Scholar]
  • Vašek M, Vejřík L, Vejříková I, Šmejkal M, Baran R, Muška M, Kubečka J, Peterka J. 2017. Development of non-lethal monitoring of stable isotopes in asp (Leuciscus aspius): a comparison of muscle, fin and scale tissues. Hydrobiologia 785: 327–335. [CrossRef] [Google Scholar]
  • Veinott GI, Evans RD. 1999. An examination of elemental stability in the fin ray of white sturgeon with laser ablation sampling-inductively coupled plasma − mass spectrometry (LAS-ICP-MS). Trans Am Fish Soc 128: 352–361. [CrossRef] [Google Scholar]
  • Wells BK, Bath GE, Thorrold SR, Jones CM. 2000a. Incorporation of strontium, cadmium and barium in juvenile spot (Leiostomus xanthurus) scales reflects water chemistry. Can J Fish Aquatic Sci 57: 1–8. [Google Scholar]
  • Wells BK, Thorrold SR, Jones CM. 2000b. Geographic variation in trace element composition of juvenile weakfish scales. Trans Am Fish Soc 129: 889–900. [CrossRef] [Google Scholar]
  • Wells BK, Thorrold SR, Jones CM. 2003. Stability of elemental signatures in the scales of spawning weakfish Cynoscion regalis. Can J Fish Aquat Sci 60: 361–369. [CrossRef] [Google Scholar]
  • Wiener JG, Spry DJ. 1996. Toxicological significance of mercury in freshwater fish. In Beyer WN, Heinz GH, Redmon Norwood AW, eds, Environmental Contaminants in Wildlife: Interpreting Tissue Concentrations. Lewis, Boca Raton, FL, USA, 297–339. [Google Scholar]
  • Williams L, Schoof RA, Yager JW, Goodrich-Mahoney JW. 2006. Arsenic bioaccumulation in freshwater fishes. Hum Ecol Risk Assess 12: 904–923. [CrossRef] [Google Scholar]
  • Wright DA, Welbourn PM. 1994. Cadmium in the aquatic environment: a review of ecological, physiological, and toxicological effects on biota. Environ Rev 2: 187–214. [CrossRef] [Google Scholar]
  • Yamada SB, Mulligan TJ. 1982. Strontium marking of hatchery reared coho salmon, Oncorhyncus kisutch Walbaum, identification of adults. J Fish Biol 20: 5–9. [CrossRef] [Google Scholar]
  • Zayadi N, Othman N. 2013. Characterization and optimization of heavy metals biosorption by fish scales. Adv Mat Res 795: 260–265. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.