Knowl. Manag. Aquat. Ecosyst.
Number 424, 2023
Management of habitats and populations/communities
Article Number 5
Number of page(s) 13
Published online 23 February 2023
  • Al-Chokhachy R, Budy P, Schaller H. 2005. Understanding the significance of redd counts: A comparison between two methods for estimating the abundance of and monitoring bull trout populations. N Am J Fish Manag 25: 1505–1512. [CrossRef] [Google Scholar]
  • Amrhein V, Korner P, Naguib M. 2002. Nocturnal and diurnal singing activity in the nightingale: correlations with mating status and breeding cycle. Anim Behav 64: 939–944. [CrossRef] [Google Scholar]
  • Applegate VC. 1950. Natural history of the sea lamprey, Petromyzon marinus, in Michigan. Federal Government Series No. 55U.S. Fish and Wildlife Service. [Google Scholar]
  • Beaulaton L, Taverny C, Castelnaud G. 2008. Fishing, abundance and life history traits of the anadromous sea lamprey (Petromyzon marinus) in Europe. Fish Res 92: 90–101. [Google Scholar]
  • Beaumont MA. 2010. Approximate Bayesian computation in evolution and ecology. Annu Rev Ecol Evol System 41: 379–406. [CrossRef] [Google Scholar]
  • Bessa E, Brand̃o ML, Gonçalves-de-Freitas E. 2022. Integrative approach on the diversity of nesting behaviour in fishes. Fish Fish 23: 564–583. [CrossRef] [Google Scholar]
  • Boulêtreau S, Carry L, Meyer E, Filloux D, Menchi O, Mataix V, Santoul F. 2020. High predation of native sea lamprey during spawning migration. Sci Rep 10: 6122. [CrossRef] [PubMed] [Google Scholar]
  • Chang W, Cheng J, Allaire J, Xie Y, MvPherson J. 2015. Package ‘shiny.’ [Google Scholar]
  • Csilléry K, Blum MGB, Gaggiotti OE, François O. 2010. Approximate Bayesian Computation (ABC) in practice. Trends Ecol Evol 25: 410–418. [CrossRef] [PubMed] [Google Scholar]
  • Dhamelincourt M, Buoro M, Rives J, Sebihi S, Tentelier C. 2021a. Individual and group characteristics affecting nest building in sea lamprey (Petromyzon marinus L. 1758). J Fish Biol 98: 557–565. [CrossRef] [PubMed] [Google Scholar]
  • ECP. 2018. Ecology and Fish Population Biology Facility. INRAE. [Google Scholar]
  • Estoup A, Wilson IJ, Sullivan C, Cornuet J-M, Moritz C. 2001. Inferring population history from microsatellite and enzyme data in serially introduced cane toads, Bufo marinus. Genetics 159: 1671–1687. [CrossRef] [PubMed] [Google Scholar]
  • Farmer GJ, Beamish FWH, Robinson GA. 1975. Food consumption of the adult landlocked sea lamprey, Petromyzon marinus, L. Comp Biochem Physiol Part A: Physiol 50: 753–757. [CrossRef] [Google Scholar]
  • Funk WC, Almeida-Reinoso D, Nogales-Sornosa F, Bustamante MR. 2003. Monitoring population trends of Eleutherodactylus frogs. hpet 37: 245–256. [Google Scholar]
  • Gardner C, Jr SMC, Zydlewski J. 2012. Distribution and abundance of anadromous sea lamprey spawners in a fragmented stream: current status and potential range expansion following barrier removal. nena 19: 99–110. [CrossRef] [Google Scholar]
  • Hamstreet CO. 2012. Spring and Summer Chinook Salmon. US Fish and Wildlife Service, Leavenworth Washington 26. [Google Scholar]
  • Hardisty MW, Potter IC. 1971. The Biology of Lampreys Volume 2, Academic Press, 488 p. [Google Scholar]
  • Harris RN. 2008. Body condition and order of arrival affect cooperative nesting behaviour in four-toed salamanders Hemidactylium scutatum. Anim Behav 75: 229–233. [CrossRef] [Google Scholar]
  • Harris RN, Hames WW, Knight IT, Carreno CA, Vess TJ. 1995. An experimental analysis of joint nesting in the salamander Hemidaetylium scutatum (Caudata: Plethodontidae): the effects of population density. Anim Behav 50: 1309–1316. [CrossRef] [Google Scholar]
  • Hume JB, Almeida PR, Buckley CM, Cri ger LA, Madenjian CP, Robinson KF, Wang CJ, Muir AM. 2021. Managing native and non-native sea lamprey (Petromyzon marinus) through anthropogenic change: a prospective assessment of key threats and uncertainties. J Great Lakes Res 47: S704–S722. [CrossRef] [Google Scholar]
  • Jabot F, Chave J. 2009. Inferring the parameters of the neutral theory of biodiversity using phylogenetic information and implications for tropical forests. Ecol Lett 12: 239–248. [CrossRef] [PubMed] [Google Scholar]
  • Jabot F, Faure T, Dumoulin N, Albert C. 2015. EasyABC: a R package to perform efficient approximate Bayesian computation sampling schemes. 38. [Google Scholar]
  • Jackson C. 2011. Multi-State Models for Panel Data: The msm Package for R. J Stat Softw 38: 1–28. [CrossRef] [Google Scholar]
  • Johnson NS, Buchinger TJ, Li W. 2015. Reproductive ecology of lampreys. In: Docker MF, ed. Lampreys: Biology, Conservation and Control: Volume 1. Netherlands, Dordrecht: Springer, pp. 265–303. [Google Scholar]
  • Johnston CA, Windels SK. 2015. Using beaver works to estimate colony activity in boreal landscapes. J Wildlife Manag 79: 1072–1080. [CrossRef] [Google Scholar]
  • Koizumi I, Shimatani IK. 2016. Socially induced reproductive synchrony in a salmonid: an approximate Bayesian computation approach. Behav Ecol 27: 1386–1396. [CrossRef] [Google Scholar]
  • Kouakou CY, Boesch C, Kuehl H. 2009. Estimating chimpanzee population size with nest counts: validating methods in Taï National Park. Am J Primatol 71: 447–457. [CrossRef] [PubMed] [Google Scholar]
  • Kruschke JK. 2010. What to believe: Bayesian methods for data analysis. Trends Cogn Sci 14: 293–300. [CrossRef] [PubMed] [Google Scholar]
  • Lasne E, Sabatié M-R, Jeannot N, Cucherousset J. 2015. The effects of DAM removal on river colonization by sea lamprey Petromyzon Marinus. River Res Appl 31: 904–911. [CrossRef] [Google Scholar]
  • Lenormand M, Jabot F, Deffuant G. 2013. Adaptive approximate Bayesian computation for complex models. Comput Stat 28: 2777–2796. [CrossRef] [MathSciNet] [Google Scholar]
  • Manion PJ, Hanson LH. 1980. Spawning behavior and fecundity of lampreys from the upper three Great Lakes. Can J Fish Aquat Sci 37: 1635–1640. [CrossRef] [Google Scholar]
  • Manion PJ, McLain AL. 1971. Biology of larval sea lampreys (Petromyzon marinus) of the 1960 year class, isolated in the Big Garlic River, Michigan, 1960-65. Organization Series No. 16. Great Lakes Fishery Commission. [Google Scholar]
  • McClintock BT, White GC. 2009. A less field-intensive robust design for estimating demographic parameters with Mark-resight data. Ecology 90: 8. [Google Scholar]
  • McKinley TJ, Vernon I, Andrianakis I, McCreesh N, Oakley JE, Nsubuga RN, Goldstein M, White RG. 2018. Approximate Bayesian computation and simulation-based inference for complex stochastic epidemic models. Stat Sci 33: 4–18. [CrossRef] [Google Scholar]
  • Migradour. 2010. Suivi de la reproduction de la Lamproie marine sur le bassin de l’Adour – Tranche 1/3, gaves et nives. [Google Scholar]
  • Morgan BJT, North PM, Ralph CJ, Scott JM. 1983. Estimating numbers of terrestrial birds. Biometrics 39: 1123. [CrossRef] [Google Scholar]
  • Nielsen R, Beaumont MA. 2009. Statistical inferences in phylogeography. Mol Ecol 18: 1034–1047. [PubMed] [Google Scholar]
  • Ostfeld RS. 1986. Territoriality and mating system of california voles. J Anim Ecol 55: 691–706. [CrossRef] [Google Scholar]
  • Pace III RM, Corkeron PJ, Kraus SD. 2017. State–space mark–recapture estimates reveal a recent decline in abundance of North Atlantic right whales. Ecol Evol 7: 8730–8741. [Google Scholar]
  • R Core Team. 2021. R: A language and environment for statistical computing. [Google Scholar]
  • Rodgers JA, Linda SB, Nesbitt SA. 1995. Comparing aerial estimates with ground counts of nests in wood stork colonies. J Wildlife Manag 59: 656–666. [CrossRef] [Google Scholar]
  • Schwarz CJ, Seber GAF. 1999. Estimating animal abundance: review III. Stat Sci 14: 427–456. [CrossRef] [Google Scholar]
  • Solow AR, Smith WK. 2009. Estimating species number under an inconvenient abundance model. JABES 14: 242–252. [CrossRef] [Google Scholar]
  • Southwood TRE. 1978. Estimates based on products and effects of insects. In: Southwood TRE, ed. Ecological methods: with particular reference to the study of insect populations. Dordrecht: Springer Netherlands, pp. 288–301. [CrossRef] [Google Scholar]
  • Turner BM, Van Zandt T. 2012. A tutorial on approximate Bayesian computation. J Math Psychol 56: 69–85. [CrossRef] [Google Scholar]
  • Wuertz D, Setz T, Chalabi Y, Boudt C, Chausse P, Miklovac M. 2016. fGarch: Rmetrics - Autoregressive conditional heteroscedastic modelling. [Google Scholar]
  • Zeileis A, Kleiber C, Jackman S. 2008. Regression models for count data in R. J Stat Soft 27. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.