Open Access
Issue |
Knowl. Manag. Aquat. Ecosyst.
Number 423, 2022
Topical Issue on Fish Ecology
|
|
---|---|---|
Article Number | 4 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/kmae/2022004 | |
Published online | 03 February 2022 |
- Baptist MJ, Penning WE, Duel H, et al. 2004. Assessment of the effects of cyclic floodplain rejuvenation on flood levels and biodiversity along the Rhine River. River Res Appl 20: 285–297. [CrossRef] [Google Scholar]
- Bravard J-P, Amoros C, Pautou G, et al. 1997. River incision in south-east France: morphological phenomena and ecological effects. Regul Rivers: Res Manag 13: 75–90. [CrossRef] [Google Scholar]
- Darling JA, Mahon AR. 2011. From molecules to management: Adopting DNA-based methods for monitoring biological invasions in aquatic environments. Environ Res 111: 978–988. [CrossRef] [PubMed] [Google Scholar]
- Iwata A. 2006. Significance of paddy field agriculture for the existence of the kissing loach (Leptobotia curta). Jpn J Conserv Ecol 11: 133–141. (In Japanese with English summary) [Google Scholar]
- Jerde CL, Mahon AR, Chadderton WL, Lodge DM. 2011. “Sight-unseen” detection of rare aquatic species using environmental DNA. Conserv Lett 4: 150–157. [CrossRef] [Google Scholar]
- Kitamura J. 2005. Factors affecting seasonal mortality of rosy bitterling (Rhodeus ocellatus kurumeus) embryos on the gills of their host mussel. Popul Ecol 47: 41–51. [CrossRef] [Google Scholar]
- Kitamura J, Negishi JN, Nishio M, Sagawa S, Akino J, Aoki S. 2009. Host mussel utilization of the Itasenpara bitterling (Acheilognathus longipinnis) in the Moo River in Himi, Japan. Ichthyol Res 56: 296–300. [CrossRef] [Google Scholar]
- Lewis WM Jr, Hamilton SK, Lasi MA, Rodríguez M, Saunders JF III. 2000. Ecological determinism on the Orinoco floodplain. BioScience 50: 681–692. [CrossRef] [Google Scholar]
- Marston RA, Girel J, Pautou G, Piegay H, Bravard J, Arneson C. 1995. Channel metamorphosis, floodplain disturbance, and vegetation development: Ain River, France. Geomorphology 13: 121–131. [CrossRef] [Google Scholar]
- Nagayama S, Harada M, Kayaba Y. 2015. Can floodplains be recovered by flood-channel excavation? − An example from Japanese lowland rivers −. Ecol Civil Eng 17: 67–77. (In Japanese with English summary) [CrossRef] [Google Scholar]
- Nagayama S, Harada M, Kayaba Y. 2016. Distribution and microhabitats of freshwater mussels in waterbodies in the terrestrialized floodplains of a lowland river. Limnology 17: 263–272. [CrossRef] [Google Scholar]
- Nagayama S, Tashiro T, Kitamura J. 2017. Inland water landscape: structural and functional changes in the ecosystem. In Shimizu H, Takatori C, Kawaguchi N, eds. Labor Forces and Landscape Management − Japanese Case Studies, Springer, Singapore, 107–120. [CrossRef] [Google Scholar]
- Nakamura F, Seo JI, Akasaka T, Swanson FJ. 2017. Large wood, sediment, and flow regimes: Their interactions and temporal changes caused by human impacts in Japan. Geomorphology 279: 176–187. [CrossRef] [Google Scholar]
- Negishi JN, Kayaba Y, Sagawa S. 2008. Ecological consequences of changing riverscape: terrestrialization of floodplain and freshwater mussels. Civil Eng J 50: 38–41. (In Japanese) [Google Scholar]
- Negishi JN, Katsuki K, Kume M, Nagayama S, Kayaba Y. 2014. Terrestrialization alters organic matter dynamics and habitat quality for freshwater mussels (Unionoida) in floodplain backwaters. Freshw Biol 59: 1026–1038. [CrossRef] [Google Scholar]
- Negishi JN, Sagawa S, Kayaba Y, Sanada S, Kume M, Miyashita T. 2012a. Mussel responses to flood pulse frequency: the importance of local habitat. Freshw Biol 57: 1500–1511. [Google Scholar]
- Negishi JN, Sagawa S, Sanada S, et al. 2012b. Using airborne scanning laser altimetry (LiDAR) to estimate surface connectivity of floodplain waterbodies. River Res Appl 28: 258–267. [CrossRef] [Google Scholar]
- Nishio M, Soliman T, Yamazaki Y. 2012. Occurrence and spawning locations of the Itasenpara bitterling (Acheilognathus longipinnis) in the Moo River, Toyama, Japan. Jpn J Ichthyol 59: 147–153. (In Japanese with English summary) [Google Scholar]
- Nishio M, Edo K, Yamazaki Y. 2017a. Paddy management for potential conservation of endangered Itasenpara bitterling via zooplankton abundance. Agric Ecosyst Environ 247: 166–171. [CrossRef] [Google Scholar]
- Nishio M, Kawamoto T, Kawakami R, Edo K, Yamazaki Y. 2015. Life history and reproductive ecology of the endangered Itasenpara bitterling Acheilognathus longipinnis (Cyprinidae) in the Himi region, central Japan. J Fish Biol 87: 616–633. [CrossRef] [PubMed] [Google Scholar]
- Nishio M, Kawamoto T, Kawakami R, Hata Y, Edo K, Yamazaki Y. 2017b. Microhabitat use by the endangered Itasenpara bitterling Acheilognathus longipinnis (Cyprinidae) during the spawning season in the Moo River, Toyama, Japan. Jpn J Ichthyol 64: 25–30. (In Japanese with English summary) [Google Scholar]
- Ogawa R, Nagata Y, Kihira H. 2000. Reviews of researches on habitats of the bitterling, Acheilognathus longipinnis in the Yodo River. Mem Osaka Kyoiku Univ Ser III 49: 33–55. (In Japanese with English summary) [Google Scholar]
- Pilliod DS, Goldberg CS, Arkle RS, Waits LP. 2014. Factors influencing detection of eDNA from a stream-dwelling amphibian. Mol Ecol Resour 14: 109–116. [CrossRef] [PubMed] [Google Scholar]
- R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. [Google Scholar]
- Rees HC, Maddison BC, Middleditch DJ, Patmore JRM, Gough KC. 2014. The detection of aquatic animal species using environmental DNA − a review of eDNA as a survey tool in ecology. J Appl Ecol 51: 1450–1459. [CrossRef] [Google Scholar]
- Saitoh K, Katano O, Koizumi A. 1988. Movement and spawning of several freshwater fishes in temporary waters around paddy fields. Jpn J Ecol 38: 35–47. (In Japanese with English summary) [Google Scholar]
- Sigsgaard EE, Carl H, Møller PR, Thomsen PF. 2015. Monitoring the near-extinct European weather loach in Denmark based on environmental DNA from water samples. Biol Conserv 183: 46–52. [Google Scholar]
- Smith C, Reynolds JD, Sutherland WD, Jurajda P. 2000. Adaptive host choice and avoidance of superparasitism in the spawning decisions of bitterling (Rhodeus sericeus). Behav Ecol Sociobiol 48: 29–35. [CrossRef] [Google Scholar]
- Takahara T, Yamanaka H, Minamoto T, Doi H, Uchii K. 2016. Current state of biomonitoring method using environmental DNA analysis. Jpn J Ecol 66: 583–599. (In Japanese) [Google Scholar]
- Takahashi M, Nakamura F. 2011. Impacts of dam-regulated flows on channel morphology and riparian vegetation: a longitudinal analysis of Satsunai River, Japan. Landscape Ecol Eng 7: 65–77. [CrossRef] [Google Scholar]
- Tockner K, Bretschko G. 1996. Spatial distribution of particulate organic matter (POM) and benthic invertebrates in a river-floodplain transect (Danube, Austria): importance of hydrological connectivity. Large Rivers 11: 11–27. [Google Scholar]
- Tockner K, Stanford JA. 2002. Riverine flood plains: present state and future trends. Environ Conserv 29: 308–330. [CrossRef] [Google Scholar]
- Tonkin Z, King AJ, Mahoney J. 2008. Effects of flooding on recruitment and dispersal of the Southern Pygmy Perch (Nannoperca australis) at a Murray River floodplain wetland. Ecol Manag Restor 9: 196–201. [CrossRef] [Google Scholar]
- Van den Brink FWB, de Leeuw JPHM, Van der Velde G, Verheggen GM. 1993. Impact of hydrology on the chemistry and phytoplankton development in floodplain lakes along the Lower Rhine and Meuse. Biogeochemistry 19: 103–128. [Google Scholar]
- Yamanaka H, Motozawa H, Tsuji S, Miyazawa RC, Takahara T, Minamoto T. 2016. On-site filtration of water samples for environmental DNA analysis to avoid DNA degradation during transportation. Ecol Res 31: 963–967. [CrossRef] [Google Scholar]
- Yamanaka H, Minamoto T, Matsuura J, et al. 2017. A simple method for preserving environmental DNA in water samples at ambient temperature by addition of cationic surfactant. Limnology 18: 233–241. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.