Issue |
Knowl. Manag. Aquat. Ecosyst.
Number 423, 2022
Climate change impact on freshwater communities and ecosystem functioning
|
|
---|---|---|
Article Number | 3 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/kmae/2022003 | |
Published online | 31 January 2022 |
- Baranov V, Jourdan J, Pilotto F, Wagner R, Haase P. 2020. Complex and nonlinear climate‐driven changes in freshwater insect communities over 42 years. Conserv Biol 34: 1241–1251. [CrossRef] [PubMed] [Google Scholar]
- Bhowmik AK, Schäfer RB. 2015. Large scale relationship between aquatic insect traits and climate. PLoS ONE 10: e0130025. https://doi.org/10.1371/journal.pone.0130025. [CrossRef] [PubMed] [Google Scholar]
- Bowler DE, Mant R, Orr H, Hannah DM, Pullin AS. 2012. What are the effects of wooded riparian zones on stream temperature? Environ Evid 1: 3. [CrossRef] [Google Scholar]
- Bratton JH. 1990. A review of the scarcer Ephemeroptera and Plecoptera of Great Britain. Nature Conservancy Council, Peterborough, UK. Research & survey in Nature Conservation no. 29: 1–39. [Google Scholar]
- Brittain JE. 2008. Mayflies, biodiversity and climate change, in International Advances in the Ecology, Zoogeography and Systematics of Mayflies and Stoneflies, edited by F.R. Hauer, J.A. Stanford, R.L. Newell. Berkeley, CA, USA: University of California Press, pp. 1–14. [Google Scholar]
- Broadmeadow SB, Jones JG, Langford TEL, Shaw PJ, Nisbet TR. 2010. The influence of riparian shade on lowland stream water temperatures in southern England and their viability for brown trout. River Res Appl 27: 226–237. [Google Scholar]
- Buffagni A, Cazzola M, López-Rodríguez MJ, Alba-Tercedor J, Armanini DG. 2009. Distribution and Ecological Preferences of European Freshwater Organisms. Volume 3–Ephemeroptera, edited by A. Schmidt-Kloiber, D. Hering. Pensoft Publishers (Sofia-Moscow). 254pp. [Google Scholar]
- Chadd RP, England JA, Constable D, et al. 2017. An index to track the ecological effects of drought development and recovery on riverine invertebrate communities. Ecol Ind 82: 344–356. [CrossRef] [Google Scholar]
- Clarke SJ. 2009. Adapting to climate change: implications for freshwater biodiversity and management in the UK. Freshw Rev 2: 51–64. [CrossRef] [Google Scholar]
- Conti L, Schmidt-Kloiber A, Grenouillet G, Graf W. 2014. A trait-based approach to assess the vulnerability of European aquatic insects to climate change. Hydrobiologia 721: 297–315. [CrossRef] [Google Scholar]
- Darwall W, Bremerich V, De Wever A, et al. 2018. The Alliance for Freshwater Life: A global call to unite efforts for freshwater biodiversity science and conservation. Aquat Conserv Mar Freshw Ecosyst 28: 1015–1022. [CrossRef] [Google Scholar]
- Death R. 2008. The effect of floods on aquatic invertebrate communities. Aquatic insects: Challenges to populations. London: Royal Entomological Society. [Google Scholar]
- Diaz S, Settele J, Brondízio ES, et al. 2019. IPBES: Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. IPBES secretariat, Bonn, Germany. 56 pages. https://doi.org/10.5281/zenodo.3553579. [Google Scholar]
- Dohet A, Hlúbiková D, Wetzel CE, et al. 2015. Influence of thermal regime and land use on benthic invertebrate communities inhabiting headwater streams exposed to contrasted shading. Sci Total Environ 505: 1112–1126. [CrossRef] [PubMed] [Google Scholar]
- Domisch S, Jähnig SC, Haase P. 2011. Climate‐change winners and losers: stream macroinvertebrates of a submontane region in Central Europe. Freshw Biol 56: 2009–2020. [CrossRef] [Google Scholar]
- Domisch S, Araújo MB, Bonada N, Pauls SU, Jähnig SC, Haase P. 2013. Modelling distribution in European stream macroinvertebrates under future climates. Glob Change Biol 19: 752–762. [CrossRef] [Google Scholar]
- Durance I, Ormerod S. 2007. Climate change effects on upland stream macroinvertebrates over a 25-year period. Glob Change Biol 13: 942–957. [CrossRef] [Google Scholar]
- Durance I, Ormerod S. 2008. Evaluating climatic effects on aquatic invertebrates in southern English rivers. Environment Agency Science Report SC070046. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/291640/scho0908boqy-e-e.pdf [accessed 04/01/2021]. [Google Scholar]
- Durance I, Vaughan IP, Ormerod S. 2009. Evaluating climatic effects on aquatic invertebrates, Phase II: review, comparisons between regions and methodological considerations. Environment Agency Science Report: SC070047/R1. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/291642/scho1209brjt-e-e.pdf [accessed 04/01/2021]. [Google Scholar]
- Elliott JM. 1991. Aquatic insects as target organisms for the study of effects of projected climate change in the British Isles. Freshw Forum 1: 196–203. [Google Scholar]
- Everall NC, Johnson MF, Wilby RL, Bennett CJ. 2015. Detecting phenology change in the mayfly Ephemera danica: responses to spatial and temporal water temperature variations. Ecol Entomol 40: 95–105. [CrossRef] [Google Scholar]
- Franco AMA, Hill JK, Kitschke C, et al. 2006. Impacts of climate warming and habitat loss on extinctions at species' low-latitude range boundaries. Glob Change Biol 12: 1545–1553. [CrossRef] [Google Scholar]
- Goss CW, Sullivan SMP, Goebel PC. 2020. Effects of land-cover transitions on emerging aquatic insects and environmental characteristics of headwater streams in an agricultural catchment. River Res Appl 36: 1097–1108. [CrossRef] [Google Scholar]
- Graf W, Lorenz AW, Tierno de Figueroa JM, Lücke S, López-Rodríguez MJ, Davies C. 2009. Distribution and Ecological Preferences of European Freshwater Organisms. Volume 2–Plecopter, edited by A. Schmidt-Kloiber, D. Hering. Sofia-Moscow: Pensoft Publishers, 262pp. [Google Scholar]
- Graf W, Murphy J, Dahl J, Zamora-Muñoz C, López-Rodríguez MJ. 2008. Distribution and Ecological Preferences of European Freshwater Organisms. Volume 1–Trichoptera, edited by A. Schmidt-Kloiber, D. Hering. Sofia-Moscow: Pensoft Publishers, 388pp. [Google Scholar]
- Hammett MJ. 2012. Nemoura lacustris Pictet, 1865 (Plecoptera: Nemouridae) − an addition to the British list. Entomolog Monthly Mag 148: 43–45. [Google Scholar]
- Hannah L. 2014. Climate Change Biology 2nd ed. New York, NY: Academic Press. [Google Scholar]
- Hayhow DB, Eaton MA, Stanbury AJ, et al. 2019. State of Nature 2019. State of Nature Partnership, 107pp. https://nbn.org.uk/stateofnature2019/reports/ [accessed 08/01/2022]. [Google Scholar]
- Hering D, Schmidt-Kloiber A, Murphy J, et al. 2009. Potential impact of climate change on aquatic insects: a sensitivity analysis for European caddisflies (Trichoptera) based on distribution patterns and ecological preferences. Aquat Sci 71: 3–14. [CrossRef] [Google Scholar]
- Hershkovitz Y, Dahm V, Lorenz AW, Hering D. 2015. A multi-trait approach for the identification and protection of European freshwater species that are potentially vulnerable to the impacts of climate change. Ecol Indic 50: 150–160. [CrossRef] [Google Scholar]
- Hickling R, Roy DB, Hill JK, Thomas CD. 2005. A northward shift of range margins in British Odonata. Glob Change Biol 11: 502–506. [CrossRef] [Google Scholar]
- Hickling R, Roy DB, Hill JK, Fox R, Thomas CD. 2006. The distributions of a wide range of taxonomic groups are expanding polewards. Glob Change Biol 12: 450–455. [CrossRef] [Google Scholar]
- Hynes HBN. 1977. A key to the adults and nymphs of the British stoneflies (Plecoptera). Freshwater Biological Association Scientific Publication 17. [Google Scholar]
- Illies J. (ed.) 1978. Limnofauna Europaea. A Checklist of the Animals Inhabiting European Inland Waters, with an Account of their Distribution and Ecology. 2nd ed. Stuttgart: Gustav Fischer Verlag, 552pp. [Google Scholar]
- Jonsson M, Hedström P, Stenroth K, et al. 2015. Climate change modifies the size structure of assemblages of emerging aquatic insects. Freshw Biol 60: 78–88. [CrossRef] [Google Scholar]
- Jourdan J, Baranov V, Wagner R, Plath M, Haase P. 2019. Elevated temperatures translate into reduced dispersal abilities in a natural population of an aquatic insect. J Anim Ecol 88: 1498–1509. [CrossRef] [PubMed] [Google Scholar]
- Kitchen L, Macadam CR, Yeomans WE. 2010. Is the Upland Summer Mayfly (Ameletus Inopinatus Eaton 1887) in Hot Water? Windermere, UK: Freshwater Biological Association. [Google Scholar]
- Kimmins DE. 1943. Rhabdiopteryx anglica, a new British species of Plecoptera. Proc Roy Entomolog Soc London Ser B 12: 42–44. [Google Scholar]
- Kristensen PB, Kristensen EA, Riis T, et al. 2013. Riparian forest as a management tool for moderating future thermal conditions of lowland temperate streams. Hydrol Earth Syst Sci Discuss 10: 6081–6106. [Google Scholar]
- Lehner B, Grill G. 2013. Global river hydrography and network routing: baseline data and new approaches to study the world's large river systems. Hydrol Process 27: 2171–2186. Data is available at www.hydrosheds.org. [CrossRef] [Google Scholar]
- Macadam CR. 2015. A review of the stoneflies (Plecoptera) of Great Britain. Species Status No.20. Natural England Commissioned Report NECR174. pp 41. [Google Scholar]
- Macadam CR. 2016. A Review of the Mayflies (Ephemeroptera) of Great Britain. Species Status No. 28. Natural England Commissioned Report, NECR193. pp 49. [Google Scholar]
- Macadam CR, Chadd RP, Pickwell A, Doe J. 2018. A new British mayfly: Baetis atlanticus (Soldán & Godunko, 2006) (Ephemeroptera: Baetidae). Entomologist's Monthly Mag 154: 263–265. [CrossRef] [Google Scholar]
- Macadam CR, Farr A. 2021. A new British mayfly: Siphlonurus aestivalis (Eaton, 1903) (Ephemeroptera: Siphlonuridae). Entomolog Monthly Mag 157: 1–7. [Google Scholar]
- Macan TT. 1963. Freshwater Ecology. London, Longmans, cited in Chadd, R and Eversham B. (2010) Chapter 31 (Other Invertebrates) in Silent Summer, edited by N. Maclean. Cambridge University Press. [Google Scholar]
- Markovic D, Carrizo SF, Kärcher O, Walz A, David JNW. 2017. Vulnerability of European freshwater catchments to climate change. Glob Change Biol 23: 3567–3580. [CrossRef] [PubMed] [Google Scholar]
- Monbertrand A-LB, Timoner P, Rahman K, et al. 2019. Assessing the vulnerability of aquatic macroinvertebrates to climate warming in a mountainous watershed: supplementing presence-only data with species traits. Water 11: 636. [CrossRef] [Google Scholar]
- Morecroft MD, Speakman L. 2015. Biodiversity Climate Change Impacts Summary Report. Living With Environmental Change. ISBN 978-0-9928679-6-6. https://nerc.ukri.org/research/partnerships/ride/lwec/report-cards/biodiversity/ [accessed 18/03/2020]. [Google Scholar]
- Morris T. 2018. Scotland's Nature on Red Alert. Scottish Environment Link/WWF Scotland, Perth, 27pp. [Google Scholar]
- Moss B. 2014. Fresh waters, climate change and UK nature conservation. Freshw Rev 7: 25–75. [CrossRef] [Google Scholar]
- Pearce-Higgins JW, Brewer MJ, Elston DA, et al. 2015. BICCO-Net II: Final report to the Biological Impacts of Climate Change Observation Network. (BICCO-Net) Steering Group. pp. 69. http://nora.nerc.ac.uk/id/eprint/512699/1/N512699CR.pdf [accessed 18/03/2020]. [Google Scholar]
- Pearce-Higgins JW, Beale CM, Oliver TH, et al. 2017. A national-scale assessment of climate change impacts on species: Assessing the balance of risks and opportunities for multiple taxa. Biol Conserv 213: 124–134. . [CrossRef] [Google Scholar]
- Riley WD, Potter ECE, Biggs J, et al. 2018. Small Water Bodies in Great Britain and Ireland: ecosystem function, human-generated degradation, options for restorative action. Sci Total Environ 645: 1598–1616. [CrossRef] [PubMed] [Google Scholar]
- Sandin L, Schmidt-Kloiber A, Svenning J-C., Jeppesen E, Friberg N. 2014. A trait-based approach to assess climate change sensitivity of freshwater invertebrates across Swedish ecoregions. Curr Zool 60: 221–232. [CrossRef] [Google Scholar]
- Schmidt-Kloiber A, Hering D. 2015. www.freshwaterecology.info − an online tool that unifies, standardises and codifies more than 20,000 European freshwater organisms and their ecological preferences. Ecol Ind 53: 271–282. [CrossRef] [Google Scholar]
- Scrimgeour GJ, Winterbourn MJ. 1989. Effects of floods on epilithon and benthic macroinvertebrate populations in an unstable New Zealand river. Hydrobiologia 171: 33–44. [CrossRef] [Google Scholar]
- SEPA. 2019. The impact of climate change on freshwater invertebrates. Scottish Environment Protection Agency. Stirling, Scotland. https://www.sepa.org.uk/media/219482/climate_change_story_invertebrates.pdf. [Accessed 4 January 2021]. [Google Scholar]
- Staponites LR, Barták V, Bílý M, Simon OP. 2019. Performance of landscape composition metrics for predicting water quality in headwater catchments. Sci Rep 9: 14405. [CrossRef] [PubMed] [Google Scholar]
- Stubbington R, Gunn J, Little S, Worrall TP, Wood PJ. 2016. Macroinvertebrate seedbank composition in relation to antecedent duration of drying and multiple wet‐dry cycles in a temporary stream. Freshw Biol 61: 1293–1307. [CrossRef] [Google Scholar]
- Taubmann J, Theissinger K, Feldheim KA, et al. 2011. Modelling range shifts and assessing genetic diversity distribution of the montane aquatic mayfly Ameletus inopinatus in Europe under climate change scenarios. Conserv Genet 12: 503–515. [CrossRef] [Google Scholar]
- Thackeray SJ, Sparks TH, Frederiksen M, et al. 2010. Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Glob Change Biol 16: 3304–3313. [CrossRef] [Google Scholar]
- Thomas SM, Griffiths SW, Ormerod SJ. 2016. Beyond cool: adapting upland streams for climate change using riparian woodlands. Glob Change Biol 22: 310–324. [CrossRef] [Google Scholar]
- Tierno de Figueroa JM, López-Rodríguez MJ, Lorenz A, Graf W, Schmidt-Kloiber A. 2009. Vulnerable taxa of European Plecoptera (Insecta) in the context of climate change. Biod Conserv 19: 1269–1277. [Google Scholar]
- Townsend CR, Hildrew AG. 1994. Species traits in relation to a habitat templet for river systems. Freshw Biol 31: 265–275. [CrossRef] [Google Scholar]
- Valladolid M, Arauzo M, Chertoprud MV, et al. 2021. The Rhyacophila fasciata Group in Europe: Rhyacophila fasciata Hagen 1859 and formerly synonymized species (Trichoptera: Rhyacophilidae), with new description of Rhyacophila fasciata and Rhyacophila septentrionis McLachlan 1865 (stat. prom.). Zootaxa 4975: 1–57. [CrossRef] [Google Scholar]
- Wallace I. 2011. Species dossier: Glossosoma intermedium. Report to Buglife − The Invertebrate Trust, Peterborough, 13pp. https://cdn.buglife.org.uk/2019/07/Glossosoma-intermedium-species-dossier.pdf [accessed 22nd January 2021]. [Google Scholar]
- Wallace I. 2016. A review of the status of the caddis flies (Trichoptera) of Great Britain − Species Status No.27. Natural England Commissioned Report NECR191. pp 127. [Google Scholar]
- Watts G, Battarbee RW, Bloomfield JP, et al. 2015. Climate change and water in the UK − past changes and future prospects. Prog Phys Geogr 39: 6–28. [CrossRef] [Google Scholar]
- Wilby RL, Johnson MF. 2020. Climate variability and implications for keeping rivers cool in England. Clim Risk Manag 30: 100259. [CrossRef] [Google Scholar]
- Woodward G, Perkins DM, Brown LE. 2010. Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philos Trans R Soc Lond B Biol Sci 365: 2093–2106. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.