Issue
Knowl. Manag. Aquat. Ecosyst.
Number 422, 2021
Topical Issue on Fish Ecology
Article Number 22
Number of page(s) 10
DOI https://doi.org/10.1051/kmae/2021021
Published online 28 May 2021
  • Adams DC, Otarola-Castillo E. 2013. Geomorph: an R package for the collection and analysis of geometric morphometric shape data. Methods Ecol Evol 4: 393–399. [Google Scholar]
  • Adams DC, Otarola-Castillo E, Sherratt E. 2014. Geomorph: Software for geometric morphometric analyses. R package version 2.0. http://cran.r-project.org/web/packages/geomorph/index.html. [Google Scholar]
  • Allendorf FW, Leary RF, Spruell P, Wenburg JK. 2001. The problems with hybrids: setting conservation guidelines. Trends Ecol Evol 16: 613–622. [Google Scholar]
  • Attard MRG, Sherratt E, Mcdonald P, Young I, Vidal-García M, Wroe S. 2018. A new, three-dimensional geometric morphometric approach to assess egg shape. PeerJ 6: e 5052. [Google Scholar]
  • Bernatchez L. 2001. The evolutionary history of brown trout (Salmo trutta L.) inferred from phylogeographic, nested clade, and mismatch analyses of mitochondrial DNA variation. Evolution 55: 351–379. [Google Scholar]
  • Berrebi P. 2015. Three brown trout Salmo trutta lineages in Corsica described through allozyme variation. J Fish Biol 86: 60–73. [Google Scholar]
  • Burnaby T. 1966. Growth-invariant discriminant functions and generalized distances. Biometrics 22: 96–110. [Google Scholar]
  • Benítez HA, Püschel T, Lemić D, Čačija M, Kozina A, Bažok R. 2014. Ecomorphological variation of the wireworm cephalic capsule: Studying the interaction of environment and geometric shape. PLoS ONE 9: e102059. [Google Scholar]
  • Bravi R, Ruffini M, Scalici M. 2013. Morphological variation in riverine cyprinids: a geometric morphometric contribution. Ital J Zool 80: 536–546. [Google Scholar]
  • Chaiphongpachara T. 2018. Comparison of landmark- and outline-based geometric morphometrics for discriminating mosquito vectors in Ratchaburi Province, Thailand. BioMed Res Int 2018: 1–10. [Google Scholar]
  • Delling B, Sabatini A, Muracciole S, Tougard C, Berrebi P. 2020. Morphologic and genetic characterisation of Corsican and Sardinian trout with comments on Salmo taxonomy. Knowl Manag Aquat Ecosyst 421: 21. [Google Scholar]
  • Fleming IA, Jonsson B, Gross MR. 1994. Phenotypic divergence of sea-ranched, farmed, and wild salmon. Can J Fish Aquat Sci 51: 2808–2824. [Google Scholar]
  • Fruciano C, Tigano C, Ferrito V. 2011. Geographical and morphological variation within and between colour phases in Coris julis (L. 1758), a protogynous marine fish. Biol J Linn Soc 104: 148–162. [Google Scholar]
  • Fruciano C, Pappalardo AM, Tigano C, Ferrito V. 2014. Phylogeographical relationships of Sicilian brown trout and the effects of genetic introgression on morphospace occupation. Biol J Linn Soc 112: 387–398. [Google Scholar]
  • Fruciano C. 2016. Measurement error in geometric morphometrics. Dev Genes Evol 226: 139–158. [Google Scholar]
  • Fruciano C, Schmidt D, Ramírez Sanchez MM, Morek W, Valle ZA, Talijančić I, Pecoraro C, Legionnet AS. 2020. Tissue preservation can affect geometric morphometric analyses: a case study using fish body shape. Zool J Linn Soc 188: 148–162. [Google Scholar]
  • Georgijev BV. 2003. On the origin of the Balkan Peninsula Salmonids. Croat J Fish 61: 147–174. [Google Scholar]
  • Hermida M, San Miguel E, Bouza C, Castro J, Martínez P. 2009. Morphological variation in a secondary contact between divergent lineages of brown trout (Salmo trutta) from the Iberian Peninsula. Genet Mol Biol 32: 42–50. [Google Scholar]
  • Ivić L, Buj I, Raguž L, Marčić Z, Ćaleta M, Zanella D, Mustafić P, Horvatić S. 2021. Diversity and structure of trout populations (Salmo sp., Salmonidae, Actinopteri) in the Žumberak-Samoborsko Gorje Nature Park in Croatia. Fundam Appl Limnol 194: 215–225. [Google Scholar]
  • Jansson H, Holmgren I, Wedin K, Andersson T. 1991. High‐frequency of natural hybrids between Atlantic Salmon, Salmo salar L., and brown trout, Salmo trutta L., in a Swedish River. J Fish Biol 39: 343–348. [Google Scholar]
  • Kalayci G, Ozturk RC, Capkin E, Altinok I. 2018. Genetic and molecular evidence that brown trout Salmo trutta belonging to the Danubian lineage are a single biological species. J Fish Biol 93: 792–804. [Google Scholar]
  • Kanjuh T, Marić A, Piria M, Špelić I, Maguire I, Simonović P. 2020. Diversity of brown trout, Salmo trutta (Actinopterygii: Salmoniformes: Salmonidae), in the Danube River basin of Croatia revealed by mitochondrial DNA. Acta Ichthyol Piscat 50: 291–300. [Google Scholar]
  • Khaefi R, Esmaeili HR, Chermahini MA. 2018. Natural hybridization of Luciobarbus barbulus x Luciobarbus kersin and Luciobarbus barbulus x Luciobarbus xanthopterus in the Persian Gulf Basin. TrJFAS 18: 1399–1407. [Google Scholar]
  • Klingenberg CP. 2011. MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour 11: 353–357. [Google Scholar]
  • Koo TK, Li MY. 2016. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropractic Med 15: 155–163. [Google Scholar]
  • Leitwein M, Guinand B, Pouzadoux J, Desmarais E, Berrebi P, Gagnaire PA. 2017. A dense brown trout (Salmo trutta) linkage map reveals recent chromosomal rearrangements in the Salmo genus and the impact of selection on linked neutral diversity. G3-Genes Genom Genet 7: 1365–1376. [Google Scholar]
  • Liasko R, Anastasiadou C, Ntakis A, Gkenas C, Leonardos ID. 2012. Morphological differentiation among native trout populations in North-Western Greece. J Biol Res-Thessalon 17: 33–43. [Google Scholar]
  • Lorenzoni M, Carosi A, Giovannotti M, La Porta G, Splendiani A, Caputo Barucchi V. 2019. Morphological survey as powerful detection tool of pure and local phenotypes in Salmo trutta complex. Knowl Manag Aquat Ecosyst 420: 48. [Google Scholar]
  • Lovrenčić L, Pavić V, Majnarić S, Abramović L, Jelić M, Maguire I. 2020. Morphological diversity of the stone crayfish − traditional and geometric morphometric approach. Knowl Manag Aquat Ecosyst 421: 1. [Google Scholar]
  • Matthews MA, Poole WR, Thompson CE, Mckillen J, Ferguson A, Hindar K, Wheelan KF. 2000. Incidence of hybridization between Atlantic salmon, Salmo salar L. and brown trout, Salmo trutta L., in Ireland. Fish Manag Ecol 7: 337–347. [Google Scholar]
  • Monet G, Uyanik A, Champigneulle A. 2006. Geometric morphometrics reveals sexual and genotypic dimorphisms in the brown trout. Aquat Living Resour 19: 47–57. [Google Scholar]
  • Ninua L, Tarkhnishvili D, Gvazava E. 2018. Phylogeography and taxonomic status of trout and salmon from the Ponto-Caspian drainages, with inferences on European Brown Trout evolution and taxonomy. Evol Ecol 8: 2645–2658. [Google Scholar]
  • Pakkasmaa S. 2001. Morphological differentiation among local trout (Salmo trutta) populations. Biol J Linn Soc 72: 231–239. [Google Scholar]
  • Piggott CVH, Verspoor E, Greer R, Hooker O, Newton J, Adams CE. 2018. Phenotypic and resource use partitioning amongst sympatric, lacustrine brown trout, Salmo trutta. Biol J Linn Soc 124: 200–212. [Google Scholar]
  • Piria M, Špelić I, Rezić A, Šprem N. 2020. Morphological traits and condition of brown trout Salmo trutta from Žumberak and Samobor mountain streams. J Cent Eur Agric 21: 231–245. [Google Scholar]
  • Pofuk M, Zanella D, Piria M. 2017. An overview of the translocated native and non-native fish species in Croatia: pathways, impacts and management. Manag Biol Invasions 8: 425–435. [Google Scholar]
  • R Core team. 2019. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. [Google Scholar]
  • Rohlf FJ. 2017a. TPSDig2, version 2.30. Stony Brook NY: Department of Ecology and Evolution, State University of New York. Available at: http://www.sbmorphometrics.org/ (accessed 22.12.2020) [Google Scholar]
  • Rohlf FJ. 2017b. TPSrelw, version 1.69. Stony Brook NY: Department of Ecology and Evolution, State University of New York. Available at: https://tpsrelw.software.informer.com/1.5/ (accessed 20.04.2021) [Google Scholar]
  • Saint-Pé K, Leitwein M, Tissot L, Poulet N, Guinand B, Berrebi P, Marselli G, Lascaux JM, Gagnaire PA, Blanchet S. 2019. Development of a large SNPs resource and a low-density SNP array for brown trout (Salmo trutta) population genetics. BMC Genom 20: 582. [Google Scholar]
  • Sanz N. 2018. Phylogeographic history of brown trout: a review. In: Lobon-Cervia J, Sanz N (eds.). Brown trout: biology, ecology and management. Hoboken, New Jersey, USA: John Wiley and Sons Ltd., pp. 525– 543. [Google Scholar]
  • Schlager S. 2017. Morpho and Rvcg − Shape Analysis in R. In: Zheng G, Li S, Szekely G (eds.). Statistical Shape and Deformation Analysis Methods, Implementation and Applications. Amsterdam: Elsevier, pp. 217– 256. [Google Scholar]
  • Scribner KT, Page KS, Bartron ML. 2001. Hybridization in freshwater fishes: a review of case studies and cytonuclear methods of biological inference. Rev Fish Biol Fisher 10: 293–323. [Google Scholar]
  • Simonović P, Marić S, Nikolić V. 2007. Trout Salmo spp. complex in Serbia and adjacent regions of the western Balkans: reconstruction of evolutionary history from external morphology. J Fish Biol 70: 359–380. [Google Scholar]
  • Snoj A, Marić S, Bajec SS, Berrebi P, Janjani S, Schöffmann J. 2011. Phylogeographic structure and demographic patterns of brown trout in North-West Africa. Mol Phylogenet Evol 61: 203–211. [Google Scholar]
  • Stelkens RB, Jaffuel G, Escher M, Wedekind C. 2012. Genetic and phenotypic population divergence on a microgeographic scale in brown trout. Mol Ecol 21: 2896–2915. [Google Scholar]
  • Škraba Jurlina D, Marić A, Mrdak D, Kanjuh T, Špelić I, Nikolić V, Piria M, Simonović P. 2020. Alternative life-history in native trout (Salmo spp.) suppresses the invasive effect of alien trout strains introduced into streams in the Western part of the Balkans. Front Ecol Evol 8: 188. [Google Scholar]
  • Uemura Y, Yoshimi S, Hata H. 2018. Hybridization between two bitterling fish species in their sympatric range and a river where one species is native and the other is introduced. PLoS ONE 13: e0203423. [Google Scholar]
  • Vasil'eva ED, Vasil'ev VP. 2019. Natural hybridization in spined loaches of the genera Cobitis and Sabanejewia (Cobitidae). J Ichthyol 59: 776–785. [Google Scholar]
  • Valentin AE, Penin X, Chanut JP, Sévigny JM, Rohlf FJ. 2008. Arching effect on fish body shape in geometric morphometric studies. J Fish Biol 73: 623–638. [Google Scholar]
  • Wainwright PC, Osenberg CW, Mittelbach GG. 1991. Trophic polymorphism in the pumpkinseed sunfish (Lepomis gibbosus Linnaeus): effects of environment on ontogeny. Funct Ecol 5: 40–55. [Google Scholar]
  • Webster M, Sheets HD. 2010. A practical introduction to landmark-based geometric morphometrics. In: Alroy J, Hunt G. (eds.). Quantitative Methods in Paleobiology. UK: The Paleontological Society Papers, Cambridge Core, pp. 163–188. [Google Scholar]
  • Zelditch ML, Swiderski DL, Sheets HD. 2004. Geometric Morphometrics for Biologists: a primer. Amsterdam: Elsevier, p. 478. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.