Issue
Knowl. Manag. Aquat. Ecosyst.
Number 422, 2021
Topical Issue on Fish Ecology
Article Number 20
Number of page(s) 6
DOI https://doi.org/10.1051/kmae/2021017
Published online 28 May 2021
  • Amaral SV, Hecker GE, Dixon DA. 2011. Designing leading edges of turbine blades to increase fish survival from blade strike. EPRI-DOE, Conference on Environmentally-Enhanced Hydropower Turbines, EPRI Report. [Google Scholar]
  • Avise JC, Nelson WS, Arnold J, Koehn RK, Williams GC, Thorsteinsson V. 1990. The evolutionary genetic status of Icelandic eels. Evolution 44: 1254–1262. [Google Scholar]
  • Bevelhimer MS, Pracheil BM, Fortner AM, Saylor R, Deck KL. 2019. Mortality and injury assessment for three species of fish exposed to simulated turbine blade strike. Can. J. Fish. Aquat. Sci [Google Scholar]
  • Brown RS, Carlson TJ, Gingerich AJ, Stephenson JR, Pflugrath BD, Welch AE, Langeslay MJ, Ahmann ML, Johnson RL, Skalski JR, Seaburg AG, Townsend RL. 2012a. Quantifying mortal injury of juvenile Chinook salmon exposed to simulated hydro-turbine passage. Trans Am Fish Soc 141: 147–157. [CrossRef] [Google Scholar]
  • Brown RS, Pflugrath BD, Colotelo AH, Brauner CJ, Carlson TJ, Deng ZD, Seaburg AG. 2012b. Pathways of barotrauma in juvenile salmonids exposed to simulated hydrotrubine passage: Boyle's law vs Henry's law. Fish Res 121–122: 43–50. [Google Scholar]
  • Čada GF. 1997. Shaken, not stirred: the recipe for a fish-friendly turbine. Waterpower. American Society Civil Engineers [Google Scholar]
  • Colotelo A, Mueller R, Harnish R, Martinez J, Phommavong T, Phommachanh K, Thorncraft G, Baumgartner L, Hubbard J, Rhode B. 2018. Injury and mortality of two Mekong River species exposed to turbulent shear forces. Mar Freshw Res 69: 1945–1953. [Google Scholar]
  • Dalmo R, Ingebrigtsen K, Bøgwald J. 1997. Non-specific defence mechanisms in fish, with particular reference to the reticuloendothelial system (RES). J Fish Dis 20: 241–273. [Google Scholar]
  • Dekker W. 2003. Worldwide decline of eel resources necessitates immediate action: Quabec Declaration of Concern. Fisheries 28: 28–30. [Google Scholar]
  • Deng Z, Carlson TJ, Dauble DD, Ploskey GR. 2011. Fish passage assessment of an advanced hydropower turbine and conventional turbine using blade-strike modeling. Energies 4: 57–67. [Google Scholar]
  • Deng Z, Lu J, Myjak MJ, Martinez JJ, Tian C, Morris SJ, Carlson TJ, Zhou D, Hou H. 2014. Design and implementation of a new autonomous sensor fish to support advanced hydropower development. Rev Sci Instrum 85: 115001 [Google Scholar]
  • Deng ZD, Guensch GR, Mckinstry CA, Mueller RP, Dauble DD, Richmond MC. 2005. Evaluation of fish-injury mechanisms during exposure to turbulent shear flow. Can J Fish Aquat. Sci 62: 1513–1522. [Google Scholar]
  • Eyler SM, Welsh SA, Smith DR, Rockey MM. 2016. Downstream passage and impact of turbine shutdowns on survival of silver American eels at five hydroelectric dams on the Shenandoah River. Trans Am Fish Soc 145: 964–976. [CrossRef] [Google Scholar]
  • Ferguson JW, Ploskey GR, Leonardsson K, Zabel RW, Lundqvist H. 2008. Combining turbine blade-strike and life cycle models to assess mitigation strategies for fish passing dams. Can J Fish Aquat Sci 65: 1568–1585. [Google Scholar]
  • Fu T, Deng ZD, Duncan JP, Zhou D, Carlson TJ, Johnson GE, Hou H. 2016. Assessing hydraulic conditions through Francis turbines using an autonomous sensor device. Renew Energy 99: 1244–1252. [CrossRef] [Google Scholar]
  • Haro A, Castro-Santos T, Boubée J. 2000. Behavior and passage of silver-phase American eels, Anguilla rostrata (LeSueur), at a small hydroelectric facility. Dana 12: 33–42. [Google Scholar]
  • Heisey PG, Mathur D, Phipps JL, Avalos JC, Hoffman CE, Adams SW, De-Oliveira E. 2019. Passage survival of European and American eels at Francis and propeller turbines. J Fish Biol 95: 1172–1183. [Google Scholar]
  • Jacobsen M, Pujolar J, Gilbert M, Moreno-Mayar J, Bernatchez L, Als TD, Lobon-Cervia J, Hansen MM. 2014a. Speciation and demographic history of Atlantic eels (Anguilla anguilla and A. rostrata) revealed by mitogenome sequencing. Heredity 113: 432–442. [CrossRef] [PubMed] [Google Scholar]
  • Jacobsen MW, Pujolar JM, Bernatchez L, Munch K, Jian J, Niu Y, Hansen MM. 2014b. Genomic footprints of speciation in Atlantic eels (Anguilla anguilla and A. rostrata). Mol Ecol 23: 4785–4798. [Google Scholar]
  • Jacoby D, Casselman J, Delucia M, Gollock M. 2017. Anguilla rostrata (amended version of 2014 assessment). (accessed March 17, 2020) [Google Scholar]
  • Macgregor R, Mathers A, Thompson P, Casselman JM, Dettmers JM, Lapan S, Pratt TC, Allen B. 2008. Declines of American eel in North America: complexities associated with bi-national management, In International Governance of Fisheries Ecosystems: Learning from the Past, Finding Solutions for the Future, American Fisheries Society, Bethesda, Maryland, pp. 357– 381. [Google Scholar]
  • Moursund RA, Dauble DD, Langeslay M. 2003. Turbine intake diversion screens: investigating effects on Pacific lamprey. Pacific Northwest National Lab.(PNNL), Richland, WA (United States) [Google Scholar]
  • Neitzel DA, Dauble DD, Čada GF, Richmond MC, Guensch GR, Mueller RP, Abernethy CS, Amidan BG. 2004. Survival estimates for juvenile fish subjected to a laboratory-generated shear environment. Trans Am Fish Soc 133: 447–454. [Google Scholar]
  • Neitzel DA, Richmond MC, Dauble DD, Mueller RP, Moursund RA, Abernethy CS, Guensch GR. 2000. Laboratory studies on the effects of shear on fish. Pacific Northwest National Lab. (PNNL), Richland, WA (United States) [Google Scholar]
  • Nielsen ME, Esteve-Gassent M. 2006. The eel immune system: present knowledge and the need for research. J Fish Dis 29: 65–78. [Google Scholar]
  • Pflugrath BD, Boys CA, Cathers B. 2018. Predicting hydraulic structure-induced barotrauma in Australian fish species. Mar Freshw Res 69: 1954–1961. [Google Scholar]
  • Pflugrath BD, Brown RS, Carlson TJ. 2012. Maximum neutral buoyancy depth of juvenile Chinook salmon: implications for survival during hydroturbine passage. Trans Am Fish Soc 141: 520–525. [Google Scholar]
  • Pflugrath BD, Harnish R, Rhode B, Beirao B, Engbrecht K, Stephenson JR, Colotelo AH. 2019. American eel state of buoyancy and barotrauma susceptibility associated with hydroturbine passage. Knowl Manag Aquat Ecosyst 20 [Google Scholar]
  • Pflugrath BD, Harnish RA, Rhode B, Engbrecht K, Beirão B, Mueller RP, Mccann EL, Stephenson JR, Colotelo AH. 2020. The susceptibility of juvenile american shad to rapid decompression and fluid shear exposure associated with simulated hydroturbine passage. Water 12: 586 [Google Scholar]
  • Pujolar JM, Jacobsen M, Als TD, Frydenberg J, Magnussen E, Jónsson B, Jiang X, Cheng L, Bekkevold D, Maes G. 2014. Assessing patterns of hybridization between North Atlantic eels using diagnostic single-nucleotide polymorphisms. Heredity 112: 627–637. [Google Scholar]
  • Saylor R, Fortner A, Bevelhimer M. 2019. Quantifying mortality and injury susceptibility for two morphologically disparate fishes exposed to simulated turbine blade strike. Hydrobiologia 842: 55–75. [Google Scholar]
  • Tremblay V. 2012. COSEWIC assessment and status report on the American eel Anguilla rostrata in Canada, COSEWIC [Google Scholar]
  • Turnpenny AW, Davis M, Fleming J, Davies J. 1992. Experimental Studies Relating to the Passage of Fish and Shrimps Through Tidal Power Turbines [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.