Issue
Knowl. Manag. Aquat. Ecosyst.
Number 421, 2020
Topical Issue on Fish Ecology
Article Number 34
Number of page(s) 7
DOI https://doi.org/10.1051/kmae/2020028
Published online 20 July 2020
  • Attayde JL, Hansson L-A. 2001. The relative importance of fish predation and excretion effects on planktonic communities. Limnol Oceanogr 46: 1001–1012. [Google Scholar]
  • Best MD, Mantai KE. 1978. Growth of Myriophyllum: sediment or lake water as the source of nitrogen and phosphorus. Ecology 59: 1075–1080. [Google Scholar]
  • Brabrand Å, Faafeng BA, Moritz Nilssen JP. 1990. Relative importance of phosphorus supply to phytoplankton production: fish excretion versus external loading. Can J Fish Aquat Sci 47: 364–372. [Google Scholar]
  • Carpenter SR, Cole JJ, Kitchell JF, Pace ML. 1998. Impact of dissolved organic carbon, phosphorus, and grazing on phytoplankton biomass and production in experimental lakes. Limnol Oceanogr 43: 73–80. [Google Scholar]
  • Chen K-N, Bao C-H, Zhou W-P. 2009. Ecological restoration in eutrophic Lake Wuli: A large enclosure experiment. Ecol Eng 35: 1646–1655. [Google Scholar]
  • Denny P. 1972. Sites of nutrient absorption in aquatic macrophytes. J Ecol 60: 819–829. [Google Scholar]
  • Dorenbosch M, Bakker ES. 2011. Herbivory in omnivorous fishes: effect of plant secondary metabolites and prey stoichiometry. Freshw Biol 56: 1783–1797. [Google Scholar]
  • Dorenbosch M, Bakker ES. 2012. Effects of contrasting omnivorous fish on submerged macrophyte biomass in temperate lakes: a mesocosm experiment. Freshw Biol 57: 1360–1372. [Google Scholar]
  • Drenner RW, Gallo KL, Baca RM, Smith JD. 1998. Synergistic effects of nutrient loading and omnivorous fish on phytoplankton biomass. Can J Fish Aquat Sci 55: 2087–2096. [Google Scholar]
  • Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE. 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10: 1135–1142. [Google Scholar]
  • Gao H, Qian X, Wu H, Li H, Pan H, Han C. 2017. Combined effects of submerged macrophytes and aquatic animals on the restoration of a eutrophic water body—a case study of Gonghu Bay, Lake Taihu. Ecol Eng 102: 15–23. [Google Scholar]
  • Gao J, Liu Z, Jeppesen E. 2014. Fish community assemblages changed but biomass remained similar after lake restoration by biomanipulation in a Chinese tropical eutrophic lake. Hydrobiologia 724: 127–140. [Google Scholar]
  • Gu J, Jin H, He H, Ning X, Yu J, Tan B, Jeppesen E, Li K. 2016. Effects of small-sized crucian carp (Carassius carassius) on the growth of submerged macrophytes: implications for shallow lake restoration. Ecol Eng 95: 567–573. [Google Scholar]
  • Hilt S, Weyer KV de, Köhler A, Chorus I. 2010. Submerged macrophyte responses to reduced phosphorus concentrations in two peri-urban lakes. Restor Ecol 18: 452–461. [Google Scholar]
  • Horppila J, Nurminen L. 2003. Effects of submerged macrophytes on sediment resuspension and internal phosphorus loading in Lake Hiidenvesi (southern Finland). Water Res 37: 4468–4474. [CrossRef] [PubMed] [Google Scholar]
  • Jeppesen E, Lauridsen TL, Kairesalo T, Perrow MR. 1998. Impact of submerged macrophytes on fish-zooplankton interactions in lakes. In Jeppesen E, Søndergaard M, Søndergaard M, Christoffersen K, eds. The Structuring Role of Submerged Macrophytes in Lakes. New York, NY: Springer New York, 91–114. [CrossRef] [Google Scholar]
  • Jin X, Tu Q. 1990. The standard methods for observation and analysis in lake eutrophication. Beijing: Environmental Science. [Google Scholar]
  • Lake MD, Hicks BJ, Wells RDS, Dugdale TM. 2002. Consumption of submerged aquatic macrophytes by rudd (Scardinius erythrophthalmus L.) in New Zealand. Hydrobiologia 470: 13–22. [Google Scholar]
  • Liu Z, Hu J, Zhong P, Zhang X, Ning J, Larsen SE, Chen D, Gao Y, He H, Jeppesen E. 2018. Successful restoration of a tropical shallow eutrophic lake: strong bottom-up but weak top-down effects recorded. Water Res 146: 88–97. [CrossRef] [PubMed] [Google Scholar]
  • Lougheed VL, Chow-Fraser P. 1998. Factors that regulate the zooplankton community structure of a turbid, hypereutrophic Great Lakes wetland. Can J Fish Aquat Sci 55: 150–161. [Google Scholar]
  • Menezes RF, Attayde JL, Rivera, Vasconcelos F. 2010. Effects of omnivorous filter-feeding fish and nutrient enrichment on the plankton community and water transparency of a tropical reservoir. Freshw Biol 55: 767–779. [Google Scholar]
  • Miller SA, Crowl TA. 2006. Effects of common carp (Cyprinus carpio ) on macrophytes and invertebrate communities in a shallow lake. Freshw Biol 51: 85–94. [Google Scholar]
  • Pı́palová I. 2002. Initial impact of low stocking density of grass carp on aquatic macrophytes. Aquat Bot 73: 9–18. [Google Scholar]
  • Ren Z, Niu D, Ma P, Wang Y, Fu H, Elser JJ. 2019. Cascading influences of grassland degradation on nutrient limitation in a high mountain lake and its inflow streams. Ecology 100: e02755. [PubMed] [Google Scholar]
  • Scheffer M, Hosper SH, Meijer M-L, Moss B, Jeppesen E. 1993. Alternative equilibria in shallow lakes. Trends Ecol Evol 8: 275–279. [CrossRef] [PubMed] [Google Scholar]
  • Smolders AJP, Vergeer LHT, Velde GVD, Roelofs JGM. 2000. Phenolic contents of submerged, emergent and floating leaves of aquatic and semi-aquatic macrophyte species: why do they differ? Oikos 91: 307–310. [Google Scholar]
  • Usui S, Kanou K, Sano M. 2018. Food habits of fishes in a freshwater reed belt in Lake Kitaura, eastern Japan, in summer. Fisheries Sci 84: 469–476. [CrossRef] [Google Scholar]
  • Vanni MJ. 2002. Nutrient cycling by animals in freshwater ecosystems. Annu Rev Ecol Syst 33: 341–370. [Google Scholar]
  • Vanni MJ, Bowling AM, Dickman EM, Hale RS, Higgins KA, Horgan MJ, Knoll LB, Renwick WH, Stein RA. 2006. Nutrient cycling by fish supports relatively more primary production as lake productivity increases. Ecology 87: 1696–1709. [CrossRef] [PubMed] [Google Scholar]
  • Ye S, Li Z, Lek-Ang S, Feng G, Lek S, Cao W. 2006. Community structure of small fishes in a shallow macrophytic lake (Niushan Lake) along the middle reach of the Yangtze River, China. Aquat Living Resour 19: 349–359. [CrossRef] [Google Scholar]
  • Yin C, Wang Z, Zhao Y, Gao Y, Zhen W, He X, Yin C, Guan B. 2019. Megalobrama amblycephala grazes preferentially on Hydrilla verticillata but makes more efficient use of Vallisneria denseserrulata: implications for biological control of submerged macrophytes. Knowl Manag Aquat Ecosyst 420: 30. [CrossRef] [Google Scholar]
  • Yu J, Liu Z, He H, Zhen W, Guan B, Chen F, Li K, Zhong P, Teixeira-de Mello F, Jeppesen E. 2016a. Submerged macrophytes facilitate dominance of omnivorous fish in a subtropical shallow lake: implications for lake restoration. Hydrobiologia 775: 97–107. [Google Scholar]
  • Yu J, Liu Z, Li K, Chen F, Guan B, Hu Y, Zhong P, Tang Y, Zhao X, He H, Zeng H, Jeppesen E. 2016b. Restoration of shallow lakes in subtropical and tropical China: response of nutrients and water clarity to biomanipulation by fish removal and submerged plant transplantation. Water 8: 438. [Google Scholar]
  • Yu J, Xia M, Kong M, He H, Guan B, Liu Z, Jeppesen E. 2020a. A small omnivorous bitterling fish (Acheilognathus macropterus) facilitates dominance of cyanobacteria, rotifers and Limnodrilus in an outdoor mesocosm experiment. Environ Sci Pollut Res doi: 10.1007/s11356-020-08774-5. [Google Scholar]
  • Yu J, Xia M, Zhen W, Shen R, He H, Guan B, Elser JJ, Liu Z. 2020b. Density-dependent effects of omnivorous bitterling (Acheilognathus macropterus) on nutrient and plankton communities: implications for lake management and restoration. Hydrobiologia. doi: 10.1007/s10750-020-04335-6. [Google Scholar]
  • Yu J, Zhen W, Guan B, Zhong P, Jeppesen E, Liu Z. 2016c. Dominance of Myriophyllum spicatum in submerged macrophyte communities associated with grass carp. Knowl Manag Aquat Ecosyst 417: 24. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.