Open Access
Knowl. Manag. Aquat. Ecosyst.
Number 421, 2020
Article Number 35
Number of page(s) 15
Published online 21 July 2020
  • Abati S, Minciardi MR, Ciadamidaro S, Fattorini S, Ceschin S. 2016. Response of macrophyte communities to flow regulation in mountain streams. Environ Monit Assess 188: 1–12. [CrossRef] [PubMed] [Google Scholar]
  • Aguiar FC, Segurado P, Urbanic G, Cambra J, Chauvin C, Ciadamidaro S, Dörflinger G, Ferreira J, Germ M, Manolaki P, Minciardi MR, Munné A, Papastergiadou E, Ferreira MT. 2014. Comparability of river quality assessment using macrophytes: a multi-step procedure to overcome biogeographical differences. Sci Total Environ 476: 757–767. [CrossRef] [PubMed] [Google Scholar]
  • Allan JD, Castillo MM. 2007. Stream ecology: Structure and function of running waters. Dordrecht: Springer, 436 p. [Google Scholar]
  • Arle J, Wagner F. 2013. Effects of anthropogenic salinisation on the ecological status of macroinvertebrate assemblages in the Werra River (Thuringia, Germany). Hydrobiologia 701: 129–148. [Google Scholar]
  • Baattrup-Pedersen A, Riis T. 1999. Macrophyte diversity and composition in relation to substratum characteristics in regulated and unregulated Danish streams. Freshw Biol 42: 375–385. [Google Scholar]
  • Bis B. 2008. Assessing the Ecological Status Assessment of Freshwaters. In: Voreadou C, ed. Freshwater Ecosystems in Europe − An Educational Approach. Natural History Museum of Crete, Selena Press, Heraklion, Greece, 56–59. [Google Scholar]
  • Brock MA, Nielsen DL, Crosslé K. 2005. Changes in biotic communities developing from freshwater wetland sediments under experimental salinity and water regimes. Freshw Biol 50: 1376–1390. [Google Scholar]
  • Byers EJ, Cuddington K, Jones CG, Talley TS, Hastings A, Lambrinos JG, Crooks JA, Wilson WG. 2006. Using ecosystem engineers to restore ecological systems. Trends Ecol Evol 21: 493–500. [CrossRef] [PubMed] [Google Scholar]
  • Cañedo-Argüelles M, Kefford BJ, Piscart C, Prat N, Schäfer RB, Schulz C-J. 2013. Salinisation of rivers: an urgent ecological issue. Environ Pollut 173: 157–167. [Google Scholar]
  • Chambers PA, DeWreede RE, Irlandi EA, Vandermeulen H. 1999. Management issues in aquatic macrophyte ecology: a Canadian perspective. Can J Bot 77: 471–487. [Google Scholar]
  • Chambers PA, Lacoul P, Murphy KJ, Thomaz SM. 2008. Global diversity of aquatic macrophytes in freshwater. Hydrobiologia 595: 9–26. [Google Scholar]
  • Chmura D. 2014. Phytocoenotic characteristics of secondary forest communities with contribution of Quercus rubra L. in the Silesian Upland. Acta Botanica Silesiaca 10: 17–40. [Google Scholar]
  • Dinka M, Ágnoston-Szabó E, Berczik A, Kutrucz G. 2004. Influence of water level fluctuation on the spatial dynamic of the water chemistry at Lake Fertő/Neusiedler See. Limnologica 34: 48–56. [Google Scholar]
  • Directive, 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Communities L327: 1–72. [Google Scholar]
  • Engelhardt KAM, Ritchie ME. 2001. Effects of macrophyte species richness on wetland ecosystem functioning and services. Nature 411: 687–689. [CrossRef] [PubMed] [Google Scholar]
  • Fovler J, Cohen L, Jarvis P. 1998. Practical statistics for field biology. England: Wiley, 272 p. [Google Scholar]
  • Gebler D, Wiegleb G, Szoszkiewicz K. 2018. Integrating river hydromorphology and water quality into ecological status modelling by artificial neural networks. Water Res 139: 395–405. [CrossRef] [PubMed] [Google Scholar]
  • Grime JP. 1997. Biodiversity and ecosystem function: the debate deepens. Science 277: 1260–1261. [Google Scholar]
  • Halabowski D, Bielańska-Grajner I, Lewin I. 2019. Effect of underground salty mine water on the rotifer communities in the Bolina River (Upper Silesia, Southern Poland). Knowl Manag Aquat Ecosyst 420: 31. [CrossRef] [Google Scholar]
  • Halabowski D, Lewin I, Buczyński P, Krodkiewska M, Płaska W, Sowa A, Buczyńska E. 2020. Impact of the discharge of salinised coal mine waters on the structure of the macroinvertebrate communities in an urban river (Central Europe). Water Air Soil Pollut 321: 5. [Google Scholar]
  • Halabowski D, Sowa A, Krodkiewska M. 2018. Inland coal mine settling pond as a habitat for the brackish-water plant Ruppia maritima . Pol J Ecol 66: 301–308. [CrossRef] [Google Scholar]
  • Hart BT, Bailey P, Edwards R, Hortle K, James K, McMahon A, Meredith C, Swadling K. 1991. A review of the salt sensitivity of the Australian fresh-water biota. Hydrobiologia 210: 105–144. [Google Scholar]
  • Haslam SM. 2006. River plants: the macrophytic vegetation of watercourses. 2nd Revised edition. Cardigan: Forrest Text, 450 p. [Google Scholar]
  • Hauer FR, Lamberti GA. 2007. Methods in stream ecology, 2nd edn. Amsterdam–Boston–Heidelberg–London–New York–Oxford–Paris–San Diego–San Francisco–Singapore–Sydney–Tokyo: Academic Press, Elsevier, 896 p. [Google Scholar]
  • Herbert ER, Boon P, Burgin AJ, Neubauer SC, Franklin RB, Ardón M, Hopfensperger KN, Lamers LPM, Gell P. 2015. A global perspective on wetland salinization: ecological consequences of a growing threat to freshwater wetlands. Ecosphere 6: 1–43. [Google Scholar]
  • Hering D, Johnson RK, Kramm S, Schmutz S, Szoszkiewicz K, Verdonschot PFM. 2006. Assessment of European streams with diatoms, macrophytes, macroinvertebrates and fish: a comparative metric-based analysis of organism response to stress. Freshw Biol 51: 1757–1785. [Google Scholar]
  • Hermanowicz W, Dojlido J, Dożańska W, Koziorowski B, Zerbe J. 1999. Physical and chemical studies of water and wastewater. Warszawa: Arkady, 558 p. [Google Scholar]
  • Hintz WD, Relyea RA. 2019. A review of the species, community, and ecosystem impacts of road salt salinisation in fresh waters. Freshw Biol 64: 1081–1097. [Google Scholar]
  • Hopfensperger KN, Burgin AJ, Schoepfer VA, Helton AM. 2014. Impacts of saltwater incursion on plant communities, anaerobic microbial metabolism, and resulting relationships in a restored freshwater wetland. Ecosystems 17: 792–807. [Google Scholar]
  • James K, Hart B. 1993. Effect of salinity on four freshwater macrophytes. Mar Freshw Res 44: 769–777. [Google Scholar]
  • James KR, Cant B, Ryan T. 2003. Responses of freshwater biota to rising salinity levels and implications for saline water management: a review. Aust J Bot 51: 703–713. [CrossRef] [Google Scholar]
  • Janauer GA, Dokulil M. 2006. Macrophytes and Algae in Running Waters. In Ziglio G, Siligardi M, Flaim G, eds. Biological Monitoring of Rivers. John Wiley & Sons, UK, 89–109. [CrossRef] [Google Scholar]
  • Johnson RK, Hering D, Furse MT, Clarke KE. 2006. Detection of ecological change using multiple organism groups: metrics and uncertainty. Hydrobiologia 566: 115–137. [Google Scholar]
  • Jusik S, Szoszkiewicz K, Kupiec JM, Lewin I, Samecka-Cymerman A. 2015. Development of comprehensive river typology based on macrophytes in the mountain-lowland gradient of different Central European ecoregions. Hydrobiologia 745: 241–262. [Google Scholar]
  • Kaijser W, Kosten S, Hering D. 2019. Salinity tolerance of aquatic plants indicated by monitoring data from the Netherlands. Aquat Bot 158: 103129. [Google Scholar]
  • Kelly VR, Lovett GM, Weathers KC, Findlay SEG, Strayer DL, Burns DJ, Likens GE. 2008. Long-term sodium chloride retention in a rural watershed: Legacy effects of road salt on streamwater concentration. Environ Sci Technol Lett 42: 410–415. [Google Scholar]
  • Klama H. 2006. Systematic catalogue of Polish liverwort and hornwort taxa. In: Szweykowski J, ed. An annotated checklist of Polish liverworts and hornworts. Kraków: W. Szafer Institute of Botany PAS, 83–100. [Google Scholar]
  • Kozlowski T. 1997. Responses of woody plants to flooding and salinity. Tree Physiology Monograph 1: 1–29. [Google Scholar]
  • Ladrera R, Cañedo-Argüellesa M, Prat N. 2017. Impact of potash mining in streams: the Llobregat basin (northeast Spain) as a case study. J Limnol 76: 343–354. [Google Scholar]
  • Lewin I, Halabowski D, Rymarski Z. 2018. The first records of the occurrence of a North American invader Gammarus tigrinus Sexton, 1939 in the tributaries of the upper Vistula River. Knowl Manag Aquat Ecosyst 419: 31. [CrossRef] [Google Scholar]
  • Manolaki P, Kun G, Vieira C, Papastergiadou E, Riis T. 2020. Hydromorphology as a controlling factor of macrophytes assemblage structure and functional traits in the semi-arid European Mediterranean streams. Sci Total Environ 703: 134658. [CrossRef] [PubMed] [Google Scholar]
  • Matuszkiewicz W. 2008. A guide for marking Poland's plant communities. In: Faliński JB, ed. Vademecum Geobotanicum 3. Warszawa: PWN, 1–537. [Google Scholar]
  • McCune B, Grace JB. 2002. Analysis of ecological communities. Oregon, USA, Gleneden Beach: MjM Software Design, 300 p. [Google Scholar]
  • McKee KL, Mendelssohn IA. 1989. Response of a freshwater marsh plant community to increased salinity and increased water level. Aquat Bot 34: 301–316. [Google Scholar]
  • Mirek Z, Piękoś-Mirkowa H, Zając A, Zając M. 2002. Flowering plants and pteridophytes of Poland. A checklist. In: Mirek Z, ed. Biodiversity of Poland, 1. Kraków: W. Szafer Institute of Botany PAS, 1–442. [Google Scholar]
  • Mucina L, Bültmann H, Dierßen K, Theurillat J-P, Raus T, Čarni A, Šumberová K, Willner W, Dengler J, Gavilán García R, Chytrý M, Hájek M, Di Pietro R, Iakushenko D, Pallas J, Daniëls FJA, Bergmeier E, Santos Guerra A, Ermakov N, Valachovič M, Schaminée JHJ, Lysenko T, Didukh YP, Pignatti S, Rodwell JS, Capelo J, Weber HE, Solomeshch A, Dimopoulos P, Aguiar C, Hennekens SM, Tichý L. 2016. Vegetation of Europe: hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. Appl Veg Sci 19: 3–264. [Google Scholar]
  • Munns R, Tester M. 2008. Mechanisms of salinity tolerance. Annu Rev Plant Biol 59: 651–681. [Google Scholar]
  • Neubauer SC, Craft CB. 2009. Global change and tidal freshwater wetlands: Scenarios and impacts. In: Barendregt A, Whigham DF, Baldwin AH, ed. Tidal freshwater wetlands. Leiden: Backhuys Publishers, 253–266. [Google Scholar]
  • Nielsen DL, Brock MA, Rees GN, Baldwin DS. 2003. Effects of increasing salinity on freshwater ecosystems in Australia. Aust J Bot 51: 655–665. [CrossRef] [Google Scholar]
  • Ochyra R, Żarnowiec J, Bednarek-Ochyra H. 2003. Census Catalogue of Polish Mosses. In: Mirek Z, ed. Biodiversity of Poland, 3. Kraków: W. Szafer Institute of Botany PAS, 1–372. [Google Scholar]
  • Pieterse AH, Murphy KJ. 1993. Aquatic weeds, 2nd ed. Oxford: Oxford University Press, 612 p. [Google Scholar]
  • Piscart C, Moreteau J-C, Beisel J-N. 2005. Biodiversity and structure of macroinvertebrate communities along a small permanent salinity gradient (Meurthe River, France). Hydrobiologia 551: 227–236. [Google Scholar]
  • Pittock J, Connell D. 2010. Australia demonstrates the planet's future: water and climate in the Murray-Darling Basin. Int J Water Resour Dev 26: 561–578. [Google Scholar]
  • Rahel FJ, Olden JD. 2008. Assessing the effects of climate change on aquatic invasive species. Conserv Biol 22: 521–533. [Google Scholar]
  • Ratyńska H, Wojterska M, Brzeg A. 2010. Multimedialna encyklopedia zbiorowisk roślinnych Polski ver. 1.1. Bydgoszcz: Instytut Edukacyjnych Technologii Informatycznych. [Google Scholar]
  • Reddy KR, DeLaune RD. 2008. Biogeochemistry of wetlands: science and applications. Boca Raton: CRC Press, 800 p. [Google Scholar]
  • Regulation, 2014. Rozporządzenie Ministra Środowiska z dnia 9 października 2014 r. w sprawie ochrony gatunkowej roślin. Available from (Accessed 05.03.2020). [Google Scholar]
  • Robinson RW, James EA, Boon PI. 2012. Population structure in the clonal, woody wetland plant Melaleuca ericifolia (Myrtaceae): an analysis using historical aerial photographs and molecular techniques. Aust J Bot 60: 9–19. [CrossRef] [Google Scholar]
  • Schinegger R, Trautwein C, Melcher A, Schmutz S. 2012. Multiple human pressures and their spatial patterns in European running waters. Water Environ J 26: 261–273. [CrossRef] [PubMed] [Google Scholar]
  • Soria M, Gutiérrez-Cánovas C, Bonada N, Acosta R, Rodríguez-Lozano P, Fortuño P, Burgazzi G, Vinyoles D, Gallart F, Latron J, Llorens P, Prat N, Cid N. 2019. Natural disturbances can produce misleading bioassessment results: Identifying metrics to detect anthropogenic impacts in intermittent rivers. J Appl Ecol 57: 283–295. [Google Scholar]
  • Sowa A, Krodkiewska M, Halabowski D, Lewin I. 2019. Response of the mollusc communities to environmental factors along an anthropogenic salinity gradient. Sci Nat 106: 60. [CrossRef] [Google Scholar]
  • Stanford JA, Ward JV. 1979. Stream regulation in North America. In: Stanford JA, Ward JV, ed. The ecology of Regulated Rivers. New York: Plenum Publishing Corporation, 215–236. [CrossRef] [Google Scholar]
  • Steffen K, Leuschner C, Müller U, Wiegleb G, Becker T. 2014. Relationships between macrophyte vegetation and physical and chemical conditions in northwest German running waters. Aquat Bot 113: 46–55. [Google Scholar]
  • Strozik G. 2017. Reduction of saline waters discharge from coal mines through filling and sealing of underground voids. World Scientific News 72: 498–512. [Google Scholar]
  • Szöcs E, Coring E, Bäthe J, Schäfer RB. 2014. Effects of anthropogenic salinization on biological traits and community composition of stream macroinvertebrates. Sci Total Environ 468–469: 943–949. [PubMed] [Google Scholar]
  • Szoszkiewicz K, Ferreira T, Korte T, Baattrup-Pedersen A, Davy-Bowker J, O'Hare M. 2006. European river plant communities: the importance of organic pollution and the usefulness of existing macrophyte metrics. Hydrobiologia 566: 211–234. [Google Scholar]
  • Szoszkiewicz K, Jusik S, Adynkiewicz-Piragas M, Gebler D, Achtenberg K, Radecki-Pawlik A, Okruszko T, Gielczewski M, Pietruczuk K, Przesmycki M, Nawrocki P. 2017a. Podręcznik oceny wód płynących w oparciu o Hydromorfologiczny Indeks Rzeczny. Biblioteka Monitoringu Środowiska, Warszawa, 189 p. [Google Scholar]
  • Szoszkiewicz K, Jusik S, Adynkiewicz-Piragas M, Gebler D, Achtenberg K, Radecki-Pawlik A, Okruszko T, Gielczewski M, Pietruczuk K, Przesmycki M, Nawrocki P. 2017b. Hydromorphological Index for Rivers (HIR). Hydromorphological assessment and classification method for running waters in Poland fulfilling standards of PN-EN 14614: 2008. Available from (Accessed 25.04.2020). [Google Scholar]
  • Szoszkiewicz K, Jusik S, Lewin I, Czerniawska-Kusza I, Kupiec JM, Szostak M. 2018. Macrophyte and macroinvertebrate patterns in unimpacted mountain rivers of two European ecoregions. Hydriobiologia 808: 327–342. [CrossRef] [Google Scholar]
  • Szoszkiewicz K, Zbierska J, Jusik S, Zgoła T. 2010. Macrophyte Method for River Assessment. A methodological manual on the assessment and classification of the ecological status of flowing waters based on aquatic plants. Poznań: Bogucki Wydawnictwo Naukowe, 81 p. [Google Scholar]
  • Szoszkiewicz K, Ciecierska H, Kolada A, Schneider SC, Szwabińska M, Ruszczyńska J. 2014. Parameters structuring macrophyte communities in rivers and lakes − results from a case study in North-Central Poland. Knowl Manag Aquat Ecosyst 415: 08. [CrossRef] [Google Scholar]
  • Teeter JW. 1965. Effects of sodium chloride on the sago pondweed. J Wildl Manage 29: 838–845. [Google Scholar]
  • Ter Braak CJF, Šmilauer P. 2002. CANOCO reference manual and CanoDraw for Windows user's guide: software for canonical community ordination (version 4.5). Ithaca: Microcomputer Power, 500 p. [Google Scholar]
  • Thouvenot L, Deleu C, Berardocco S, Haury J, Thiébaut G. 2015. Characterization of the salt stress vulnerability of three invasive freshwater plant species using a metabolic profiling approach. J Plant Physiol 175: 113–121. [CrossRef] [PubMed] [Google Scholar]
  • Thouvenot L, Haury J, Thiébaut G. 2012. Responses of two invasive macrophyte species to salt. Hydrobiologia 686: 213–223. [Google Scholar]
  • Thouvenot L, Thiébaut G. 2018. Regeneration and colonization abilities of the invasive species Elodea canadensis and Elodea nuttallii under a salt gradient: implications for freshwater invasibility. Hydrobiologia 817: 193–203. [Google Scholar]
  • Todd AK, Kaltenecker MG. 2012. Warm season chloride concentrations in stream habitats of freshwater mussel species at risk. Environ Pollut 171: 199–206. [Google Scholar]
  • van den Brink FWB, van der Velde G. 1993. Growth and morphology of four freshwater macrophytes under the impact of the raised salinity level of the Lower Rhine. Aquat Bot 45: 285–297. [Google Scholar]
  • Vermaat JE, Debruyne RJ. 2003. Factors limiting the distribution of submerged waterplants in the lowland river Vecht (The Netherlands). Freshw Biol 30: 147–157. [Google Scholar]
  • Vörösmarty CJ, Green P, Salisbury J, Lammers RB. 2000. Global water resources: vulnerability from climate change and population growth. Science 289: 284–288. [Google Scholar]
  • Vörösmarty CJ, McIntyre PB, Gessner MO, Dudgeon D, Prusevich A, Green P, Glidden S, Bunn SE, Sullivan CA, Liermann CR. 2010. Global threats to human water security and river biodiversity. Nature 467: 555–561. [CrossRef] [PubMed] [Google Scholar]
  • Westlake DF. 1975. Macrophytes. In: Whitton BA, ed. River Ecology. Berkeley, CA: University of California Press, 106–128. [Google Scholar]
  • Williams WD. 2001. Anthropogenic salinisation of inland waters. Hydrobiologia 466: 329–337. [Google Scholar]
  • Wollny JT, Otte A, Harvolk-Schöning S. 2019. Dominance of competitors in riparian plant species composition along constructed banks of the German rivers Main and Danube. Ecol Eng 127: 324–337. [Google Scholar]
  • Wood KA, O'Hare MT, McDonald C, Searle KR, Daunt F, Stillman RA. 2017. Herbivore regulation of plant abundance in aquatic ecosystems. Biol Rev 92: 1128–1141. [CrossRef] [Google Scholar]
  • Zhao Q, Guo F, Zhang Y, Yang Z, Ma S. 2018. Effects of secondary salinisation on macroinvertebrate functional traits in surface mining-contaminated streams, and recovery potential. Sci Total Environ 640–641: 1088–1097. [CrossRef] [PubMed] [Google Scholar]
  • Zimmermann-Timm H. 2007. Salinisation of inland waters. In Lozan J, Grssl H, Hupfer P, Menzel L, Schönwiese C, eds. Water Uses and Human Impacts on the Water Budget. Verlag Wissenschaftliche Auswertungen/GEO, Hamburg, 133–136. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.