Open Access
Knowl. Manag. Aquat. Ecosyst.
Number 421, 2020
Article Number 36
Number of page(s) 8
Published online 03 August 2020
  • Alexova R, Haynes PA, Ferrari BC, Neilan BA. 2011. Comparative protein expression in different strains of the bloom-forming cyanobacterium Microcystis aeruginosa. Mol Cell Proteomics 10: 3749–3765. [Google Scholar]
  • Antunes JT, Leão PN, Vasconcelos VM. 2015. Cylindrospermopsis raciborskii: review of the distribution, phylogeography, and ecophysiology of a global invasive species. Front Microbiol 6: 473–485. [CrossRef] [PubMed] [Google Scholar]
  • Branco CW, Senna PA. 1994. Factors influencing the development of Cylindrospermopsis raciborskii and Microcystis aeruginosa in the Paranoá Reservoir, Brasília, Brazil. Algological Studies/Archiv für Hydrobiologie 75: 85–96. [CrossRef] [Google Scholar]
  • Burford M, Beardall J, Willis A, Orr P, Magalhaes VF, Rangel LM, Azevedo SMFOE, Neilan BA. 2016. Understanding the winning strategies used by the bloom-forming cyanobacterium Cylindrospermopsis raciborskii . Harmful Algae 54: 44–53. [Google Scholar]
  • Chislock MF, Sharp KL, Wilson AE. 2014. Cylindrospermopsis raciborskii dominates under very low and high nitrogen-to-phosphorus ratios. Water Res 49: 207–214. [CrossRef] [PubMed] [Google Scholar]
  • Costa IA, Azevedo SM, Senna PA, Bernardo RR, Costa SM, Chellappa NT. 2006. Occurrence of toxin-producing cyanobacteria blooms in a Brazilian semiarid reservoir. Braz J Biol 66: 211–219. [PubMed] [Google Scholar]
  • da Silva Brito MT, Duarte-Neto PJ, Molica RJR. 2018. Cylindrospermopsis raciborskii and Microcystis aeruginosa competing under different conditions of pH and inorganic carbon. Hydrobiologia 815: 253–266. [Google Scholar]
  • El-Shehawy R, Gorokhova E, Fernández-Piñas F, del Campo FF. 2012. Global warming and hepatotoxin production by cyanobacteria: what can we learn from experiments? Water Res 46: 1420–1429. [CrossRef] [PubMed] [Google Scholar]
  • Figueredo CC, Giani A. 2009. Phytoplankton community in the tropical lake of Lagoa Santa (Brazil): conditions favoring a persistent bloom of Cylindrospermopsis raciborskii . Limnologica 39: 264–272. [Google Scholar]
  • Figueredo CC, Giani A, Bird DE. 2007. Does allelopathy contribute to Cylindrospermopsis raciborskii (cyanobacteria) bloom occurrence and geographic expansion? J Phycol 43: 256–265. [Google Scholar]
  • Grover JP. 1991. Resource competition among microalgae in variable environments: experimental tests of alternative models, Okios 62: 231–243. [CrossRef] [Google Scholar]
  • Haande S, Ballot A, Rohrlack T, Fastner J, Wiedner C, Edvardsen B. 2007. Diversity of Microcystis aeruginosa isolates (Chroococcales, Cyanobacteria) from East-African water bodies. Arch Microbiol 188: 15–25. [CrossRef] [PubMed] [Google Scholar]
  • Harke MJ, Steffen MM, Gobler CJ, Otten TG, Wilhelm SW, Wood SA, Paerl HW. 2016. A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful Algae 54: 4–20. [Google Scholar]
  • Hillebrand H, Dürselen CD, Kirschtel D, Pollingher U, Zohary T. 1999. Biovolume calculation for pelagic and benthic microalgae. J Phycol 35: 403–424. [Google Scholar]
  • Jovanović J, Trbojević I, Simić GS, Popović S, Predojević D, Blagojević A, Karadžić V. 2017. The effect of meteorological and chemical parameters on summer phytoplankton assemblages in an urban recreational lake. Knowl Manag Aquat Ecosyst 418: 48. [CrossRef] [Google Scholar]
  • Krüger T, Hölzel N, Luckas B. 2012. Influence of cultivation parameters on growth and microcystin production of Microcystis aeruginosa (Cyanophyceae) isolated from Lake Chao (China). Microb Ecol 63: 199–209. [Google Scholar]
  • Leão PN, Pereira AR, Liu WT, Ng J, Pevzner PA, Dorrestein PC, König GM, Vasconcelos VM, Gerwick WH. 2010. Synergistic allelochemicals from a freshwater cyanobacterium. Proc Natl Acad Sci USA 107: 11183–11188. [CrossRef] [Google Scholar]
  • Leão PN, Vasconcelos MT, Vasconcelos VM. 2009. Allelopathy in freshwater cyanobacteria. Crit Rev Microbiol 35: 271–282. [CrossRef] [PubMed] [Google Scholar]
  • Lei L, Li C, Peng L, Han B-P. 2015. Competition between toxic and non-toxic Microcystis aeruginosa and its ecological implication. Ecotoxicology 24: 1411–1418. [CrossRef] [PubMed] [Google Scholar]
  • Ma H, Wu Y, Gan N, Zheng L, Li T, Song L. 2015a. Growth inhibitory effect of Microcystis on Aphanizomenon flos-aquae isolated from cyanobacteria bloom in Lake Dianchi, China. Harmful Algae 42: 43–51. [Google Scholar]
  • Ma Z, Fang T, Thring RW, Li Y, Yu H, Zhou Q, Zhao M. 2015b. Toxic and non-toxic strains of Microcystis aeruginosa induce temperature dependent allelopathy toward growth and photosynthesis of Chlorella vulgaris . Harmful Algae 48: 21–29. [Google Scholar]
  • Marinho MM, Souza MB, Lürling M. 2013. Light and phosphate competition between Cylindrospermopsis raciborskii and Microcystis aeruginosa is strain dependent. Microb Ecol 66: 479–488. [Google Scholar]
  • Mello MM, Soares MCS, Roland F, Lürling M. 2012. Growth inhibition and colony formation in the cyanobacterium Microcystis aeruginosa induced by the cyanobacterium Cylindrospermopsis raciborskii . J Plankton Res 34: 987–994. [Google Scholar]
  • Miller TR, McMahon KD. 2011. Genetic diversity of cyanobacteria in four eutrophic lakes. FEMS Microbiol Ecol 78: 336–348. [CrossRef] [PubMed] [Google Scholar]
  • Moustaka-Gouni M, Vardaka E, Tryfon E. 2007. Phytoplankton species succession in a shallow Mediterranean lake (L. Kastoria, Greece): steady-state dominance of Limnothrix redekei, Microcystis aeruginosa and Cylindrospermopsis raciborskii . Hydrobiologia 575: 129–140. [Google Scholar]
  • O'Neil JM, Davis TW, Burford MA, Gobler CJ. 2012. The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14: 313–334. [Google Scholar]
  • Paerl HW, Otten TG, Joyner AR. 2016. Moving towards adaptive management of cyanotoxin-impaired water bodies. Microb Biotechnol 9: 641–651. [Google Scholar]
  • Paerl HW, Huisman J. 2008. Blooms like it hot. Science 320: 57–58. [Google Scholar]
  • Pimentel JSM, Giani A. 2014. Microcystin production and regulation under nutrient stress conditions in toxic Microcystis strains. Appl Environ Microbiol 80: 5836–5843. [Google Scholar]
  • Rice EL. 1984. Alellopathy. New York, NY, USA: Academic Press. [Google Scholar]
  • Ripka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY. 1979. Generic assignment, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111: 1–61. [Google Scholar]
  • Rzymski P, Poniedziałek B, Kokociński M, Jurczak T, Lipski D, Wiktorowicz K. 2014. Interspecific allelopathy in cyanobacteria: Cylindrospermopsin and Cylindrospermopsis raciborskii effect on the growth and metabolism of Microcystis aeruginosa . Harmful Algae 35: 1–8. [Google Scholar]
  • Sedmak B, Elersek T. 2005. Microcystins induce morphological and physiological changes in selected representative phytoplanktons. Microb Ecol 50: 298–305. [Google Scholar]
  • Shen H, Song LR. 2007. Comparative studies on physiological responses to phosphorus in two phenotypes of bloom-forming Microcystis . Hydrobiologia 592: 475–486. [Google Scholar]
  • Soares MCS, Rocha MIDA, Marinho MM, Azevedo SM, Branco CW, Huszar VL. 2009. Changes in species composition during annual cyanobacterial dominance in a tropical reservoir: physical factors, nutrients and grazing effects. Aquat Microb Ecol 57: 137–149. [Google Scholar]
  • Thomas MK, Litchman E. 2016. Effects of temperature and nitrogen availability on the growth of invasive and native cyanobacteria. Hydrobiologia 763: 357–369. [Google Scholar]
  • Vézie C, Rapala J, Vaitomaa J, Seitsonen J, Sivonen K. 2002. Effect of nitrogen and phosphorus on growth of toxic and nontoxic Microcystis strains and on intracellular microcystin concentrations. Microb Ecol 43: 443–454. [Google Scholar]
  • Wang L, Zi J, Xu R, Hilt S, Hou X, Chang X. 2017. Allelopathic effects of Microcystis aeruginosa on green algae and a diatom: evidence from exudates addition and co-culturing. Harmful Algae 61: 56–62. [Google Scholar]
  • Welker M, Brunke M, Preussel K, Lippert I, von Döhren H. 2004. Diversity and distribution of Microcystis (Cyanobacteria) oligopeptide chemotypes from natural communities studied by single-colony mass spectrometry. Microbiol 150: 1785–1796. [CrossRef] [Google Scholar]
  • Willis A, Chuang AW, Woodhouse JN, Neilan BA, Burford MA. 2016. Intraspecific variation in growth, morphology and toxin quotas for the cyanobacterium, Cylindrospermopsis raciborskii . Toxicon 119: 307–310. [CrossRef] [PubMed] [Google Scholar]
  • Wilson AE, Wilson WA, Hay ME. 2006. Intraspecific variation in growth and morphology of the bloom-forming cyanobacterium Microcystis aeruginosa . Appl Environ Microbiol 72: 7386–7389. [Google Scholar]
  • Wu Z, Shi J, Li R. 2009. Comparative studies on photosynthesis and phosphate metabolism of Cylindrospermopsis raciborskii with Microcystis aeruginosa and Aphanizomenon flos-aquae . Harmful algae 8: 910–915. [Google Scholar]
  • Xiao M, Adams MP, Willis A, Burford MA, O'Brien KR. 2017a. Variation within and between cyanobacterial species and strains affects competition: Implications for phytoplankton modelling. Harmful Algae 69: 38–47. [Google Scholar]
  • Xiao M, Willis A, Burford MA. 2017b. Differences in cyanobacterial strain responses to light and temperature reflect species plasticity. Harmful Algae 62: 84–93. [Google Scholar]
  • Yang C, Lin F, Li Q, Li T, Zhao J. 2015. Comparative genomics reveals diversified CRISPR-Cas systems of globally distributed Microcystis aeruginosa, a freshwater bloom-forming cyanobacterium. Front Microbiol 6: 394. [PubMed] [Google Scholar]
  • Yang J, Deng X, Xian Q, Qian X, Li, A. 2014. Allelopathic effect of Microcystis aeruginosa on Microcystis wesenbergii: microcystin-LR as a potential allelochemical. Hydrobiologia 727: 65–73. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.