Open Access
Issue |
Knowl. Manag. Aquat. Ecosyst.
Number 421, 2020
|
|
---|---|---|
Article Number | 12 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/kmae/2020005 | |
Published online | 03 March 2020 |
- Akopian M, Garnier J, Pourriot RA. 1999. Large reservoir as a source of zooplankton for the river: structure of the populations and influence of fish predation. J Plankton Res 21: 285–297. [Google Scholar]
- Austin H, Bradley D, Stewart-Russon I, Milner N. 2015. Literature review of the influence of large impoundments on downstream temperature, water quality and ecology, with reference to the Water Framework Directive Scottish Environmental Protection Agency. March 2015 − sepa.org.uk.pdf. [Google Scholar]
- Błędzki LA, Rybak JI. 2016. Freshwater crustacean zooplankton of Europe: Cladocera & Copepoda (Calanoida, Cyclopoida). Key to species identification with notes on ecology, distribution, methods and introduction to data analysis. Springer, 918 p. [Google Scholar]
- Borgul L. 1988. Zooplankton skorupiakowy (Crustacea) wynoszony rurociągiem i rzeką Kortówką z Jeziora Kortowskiego w latach 1986–1987. Katedra Biologii Wody i Ścieków ART Olsztyn. (manuscript). [Google Scholar]
- Bottrell HH, Duncan A, Gliwicz ZM, et al. 1976. A review of some problems in zooplankton production studies. Norw J Zool 24: 419–456. [Google Scholar]
- Bowszys M. 2004. The effect of impoundment and environmental factors on zooplankton of the Pierzchalski Dam Reservoir. Pol J Natur Sci 17: 405–423. [Google Scholar]
- Bowszys M, Dunalska JA, Jaworska B. 2014. Zooplankton response to organic carbon level in lakes of differing trophic states. Knowl Manag Aquat Ecosyst 412: 10. [CrossRef] [Google Scholar]
- Chudyba H. 1996. Batrachospermum moniliforme Roth i glony towarzyszące w rzece Kortówce w Olsztynie. Acta Academiae Agriculturae ac Technicae Olstenensis Protectio Acuarum et Piscatoria 22: 95–108. [Google Scholar]
- Clesceri LS, Greenberg AE, Eaton AD. 1998. Standard methods for the examination of water and wastewater, 20th edn. Washington, DC: American Public Health Association, 1325 p. [Google Scholar]
- Conde-Porcuna JM, Ramos-Rodriguez E, Perez-Martinez C. 2002. Correlations between nutrient concentrations and zooplankton populations in a mesotrophic reservoir. Freshw Biol 47: 1463–1473. [Google Scholar]
- Czarniawski R, Domagała J. 2010. Zooplankton communities of two lake outlets in relation to abiotic factors. Cent Eur J Biol 5: 240–255. [Google Scholar]
- Diaz RJ. 2011. Overview of hypoxia around the world. J Environ Qual 30: 275–281 [Google Scholar]
- Diaz RJ, Rosenberg R. 2008. Spreading dead zones and consequences for marine ecosystems. Science 321: 926–929. [Google Scholar]
- Dunalska J. 2001. Effect of limited hypolimnetic withdrawal on the content of nitrogen and phosphorus in the waters of Kortowskie Lake. J Natur Sci 9: 333–345. [Google Scholar]
- Dunalska J. 2003. Impact of limited water flow in a pipeline on the thermal and oxygen conditions in a Lake restored by hypolimnetic withdrawal method. Pol J Env Stud 12: 409–415. [Google Scholar]
- Dunalska J, Wiśniewski G, Mientki C. 2007. Assessment of multi-year (1956–2003) hypolimnetic withdrawal from Lake Kortowskie, Poland. Lake Reserv Manag 23: 377–387. [CrossRef] [Google Scholar]
- Ejsmont-Karabin J. 1998. Empirical equations for biomass calculation of planktonic rotifers. Pol Arch Hydrobiol 45: 513–522. [Google Scholar]
- Ejsmont-Karabin J, Radwan S, Bielańska-Grajner I. 2004. Monogonta − atlas gatunków. 32B. In: Radwan S, ed. Wrotki (Rotifera). Fauna słodkowodna Polski. 32. Polskie Towarzystwo Hydrobiologiczne, Uniwersytet Łódzki. Oficyna Wydawnicza Tercja, Łódź., 447 p. [Google Scholar]
- Ejsmont-Karabin J, Węgleńska T. 1996. Przemiany struktury zooplanktonu w strefach przejściowych rzeka-jezioro-rzeka (system rzeki Krutyni, Pojezierze Mazurskie). Zeszyty Naukowe PAN Człowiek i Środowisko 13: 263–289. [Google Scholar]
- Elliot D, Pierson JJ, Roman RM. 2013. Copepods and hypoxia in Chesapeake Bay: abundance, vertical position and non-predatory mortality. J Plankton Res 35: 1027–1034. [Google Scholar]
- Flössner D. 1972. Krebstiere, Crustacea. Kiemen-und Blattfüsser, Branchiopoda, Fischläuse, Branchiura. Jena: VEB Gustav Fischer Verlag, 382 p. [Google Scholar]
- Gołdyn R, Podsiadłowski S, Dondajewska R, Kozak A. 2014. The sustainable restoration of lakes—towards the challenges of the Water Framework Directive. Ecohydrol Hydrobiol 14: 68–74. [CrossRef] [Google Scholar]
- Hermanowicz W, Dojlido J, Zerbe J, Dołżańska W, Koziorowski B. 1999. Physico-chemical analyses of water and wastewater. Warszawa: Arkady, 555 p. [Google Scholar]
- Holmer M, Stolkholm P. 2001. Sulphate reduction and sulphur cycling in lake sediments: a review. Freshw Biol 46: 431–451. [Google Scholar]
- Jaccard P. 1912. The distribution of the flora of the alpine zone. New Phytolog 11: 37–50. [CrossRef] [Google Scholar]
- Jack JD, Thorp JH. 2002. Impacts of fish predation on an Ohio River zooplankton community. J Plankton Res 24: 119–127. [Google Scholar]
- Jaworska B, Dunalska J, Górniak D, Bowszys M. 2014a. Phytoplankton dominance structure and abundance as indicators of the trophic status and ecological state of Lake Kortowskie (northeast Poland) restored with selective hypolimnetic withdrawal. Arch Pol Fish 22: 7–15. [CrossRef] [Google Scholar]
- Jaworska B, Zdanowski B, Bowszys M, Koszałka J. 2014b. Wpływ dominacji i stałości występowania sinic na mechanizm zmian struktury fitoplanktonu w Jeziorze Kortowskim. Ochr Sr 36: 15–22. [Google Scholar]
- Kasprzak K, Niedbała W. 1981. Biocenotic indices in quantitative study. In Górny M, Grüm L, eds. Methods applied in soil zoology. Warsaw: PWN, 397–416. [Google Scholar]
- Kim H-W, Hwang S-J, Joo G-J. 2000. Zooplankton grazing on bacteria and phytoplankton in a regulated large river (Nakdong River, Korea). J Plankton Res 22: 1559–1577. [Google Scholar]
- Koste W. 1978. Rotatoria. Die Rädertiere Mitteleuropas. Überordnung Monogononta. I Textband, II Tafelband. Berlin: Gebrüder Borntraeger, 570 p. [Google Scholar]
- Kumar A. 2008. Hypolimnic withdrawal for lake conservation. In Sengupta M, Dalwani R, eds. Proceedings of Taal 2007: the 12th World Lake Conference, 812–818. [Google Scholar]
- Lehman EM, McDonald KE, Lehman JT. 2009. Whole lake selective withdrawal experiment to control harmful cyanobacteria in an urban impoundment. Water Res 43: 1187–1198 [CrossRef] [PubMed] [Google Scholar]
- Marshall DW, Otto M, Panuska JC, Jaeger SR, Sefton D, Baumberger TR. 2006. Effects of hypolimnetic releases on two impoundments and their receiving streams in southwest Wisconsin. Lake Reserv Manag 22: 223–232. [CrossRef] [Google Scholar]
- Mientki Cz. 1997. Chemical properties of Kortowskie Lake waters after 18 years experiment on its restoration. Part III. Dynamics of phosphorus compounds. Pol Arch Hydrobiol 24: 25–35. [Google Scholar]
- Mitsuka PM, Henry R. 2002. The fate of copepod populations in the Paranapanema River (São Paulo, Brazil), downstream from the Jurumirim dam. Braz Arch. Biol technol 45: 479–490. [CrossRef] [Google Scholar]
- Nielsen JP, Wærwågen SB. 2000. Superficial ecosystem similarities vs autecological stripping: the “twin species” Mesocyclops leuckarti (Claus) and Thermocyclops oithonoides (Sars) − seasonal habitat utilisation and life history traits. J Limnol 592: 79–102. [Google Scholar]
- Nielsen D, Watson G, Petrie R. 2005. Microfauna communities in three lowland rivers under differing flow regimes. Hydrobiologia 543: 101–111. [Google Scholar]
- Nürnberg GK. 1987. Hypolimnetic withdrawal as lake restoration technique. J Environ Eng 113: 1006–1017. [CrossRef] [Google Scholar]
- Nürnberg GK. 2007. Lake responses to long-term hypolimnetic withdrawal treatments. Lake Reserv Manag 23: 300–409. [Google Scholar]
- Olszewski P. 1971. Dotychczasowe wyniki eksperymentu nad odmładzaniem Jeziora Kortowskiego. Zesz Nauk WSR Olszt 3: 23. [Google Scholar]
- Pietrzak L. 2004. Wpływ krajobrazu zurbanizowanego na kształtowanie się zgrupowań larw chruścików (Trichoptera) na przykładzie Olsztyna i Złocieńca. Katedra Ekologii Ewolucyjnej UWM Olsztyn. PhD Thesis. http://www.uwm.edu.pl/czachor/publik/pdf-inne/Pietrzak.pdf. [Google Scholar]
- Ruttner-Kolisko A. 1977. Suggestions for biomass calculations of plankton rotifers. Arch Hydrobiol Beih Ergebn Limnol 8: 71–76. [Google Scholar]
- Rybak JI, Błędzki LA. 2010. Freshwater planktonic crustaceans. Warsaw: Warsaw University Press, 307 p. [Google Scholar]
- Stoecker DK, Capuzzo JM. 1990. Predation on protozoa: its importance to zooplankton. J Plankton Res 12: 891–908. [Google Scholar]
- Tandyrak R, Gołaś I, Parszuto K, et al. 2016. The effect of lake restoration by the hypolimnetic withdrawal method on the intensity of ambient odour. J Limnol 75: 531–544. [Google Scholar]
- Tischler M. 1949. Grundzuge der terristrischen Tierokologie. Braunschweig (cited from Wallwork, 1976) [Google Scholar]
- Tóth LG, Parpala L, Balogh C, Tátrai I, Baranyaia E. 2011. Zooplankton community response to enhanced turbulence generated by water-level decrease in Lake Balaton, the largest shallow lake in Central Europe. Limnol Oceanogr 56: 2211–2222. [Google Scholar]
- Viroux L. 2002. Seasonal and longitudinal aspects of microcrustacean (Cladocera, Copepoda) dynamics in a lowland river. J Plankton Res 24: 281–292. [Google Scholar]
- Wahl DH, Goodrich J, Nannini MA, Dettmers JM, Soluk DA. 2008. Exploring riverine zooplankton in three habitats of the Illinois River ecosystem: where do they come from? Limnol Oceanogr 53: 2583–2593. [Google Scholar]
- Waligóra B. 1988. Wrotki planktonowe (Rotatoria) wynoszone rurociągiem z Jeziora Kortowskiego i rzeką Kortówką w latach 1986–1987. Katedra Biologii Wody i Ścieków ART Olsztyn (manuscript). [Google Scholar]
- Wallace JB, Hutchens JJ. 2000. Effects of invertebrates in lotic ecosystem process. In Eds: Coleman DC, Hendrix PF, eds. Invertebrates as webmasters in ecosystems. Oxon: CABI Publishing, 73–96. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.