Open Access
Issue
Knowl. Manag. Aquat. Ecosyst.
Number 420, 2019
Article Number 47
Number of page(s) 11
DOI https://doi.org/10.1051/kmae/2019039
Published online 01 November 2019
  • Allan JD. 2004. Landscapes and riverscapes: the influence of land use on stream ecosystems. Annu Rev Ecol Evol Syst 35: 257–284. [Google Scholar]
  • Bazzanti M, Seminara M, Tamorri C. 1993. Eutrophication in a deep lake: depth distribution of profundal benthic communities as an indicator of environmental stress. Verh Internat Verein Limn 25: 784–789. [Google Scholar]
  • Boström B, Andersen JM, Fleischer S, Jansson M. 1988. Exchange of phosphorus across the sediment-water interface. Hydrobiologia 170: 229–244. [Google Scholar]
  • Carlson RE. 1977. A trophic state index for lakes. Limnol Oceanogr 22: 361–369. [Google Scholar]
  • Castillo MM, San José JJ, Montes RA, Aguirre R, Thielen D, Buendía C. 2012. Effects of land use changes on streams in terrestrial-aquatic palm ecotones (Morichals) of the Orinoco lowlands. Fundam Appl Limnol 181: 113–127. [CrossRef] [Google Scholar]
  • Chen M, Li XH, He YH, et al. 2016. Increasing sulfate concentrations result in higher sulfide production and phosphorous mobilization in a shallow eutrophic freshwater lake. Water Res 26: 94–104. [Google Scholar]
  • Clapcott JE, Collier KJ, Death RG, et al. 2012. Quantifying relationships between land-use gradients and structural and functional indicators of stream ecological integrity. Freshw Biol 57: 74–90. [Google Scholar]
  • Conley DJ, Paerl HW, Howarth RW, et al. 2009. Controlling eutrophication: nitrogen and phosphorus. Science 323: 1014–1015. [Google Scholar]
  • Correl DL. 1997. Buffer zones and water quality protection: General principles. In Haycock N, Burnt T, Goulding K, Pinay G, eds. Buffer Zones: Their processes and potential in water protection. Harpenden, UK: Quest Environmental, pp. 7–20. [Google Scholar]
  • Daubarienė J, Valiuškevičius G. 2009. Lake classifications used in Lithuania: system and employment possibilities. Geografija 45: 111–121. [Google Scholar]
  • Dzyuban AN. 2007. Destruction of organic matter and methane cycle in the bottom sediments of inland waters. Inst. Limnology, Russ. Acad. Sci. Press, St. Petersburg. Abstract of Doctoral dissertation, 42 p. [Google Scholar]
  • Evaluation of ecological state and anthropogenic impact on Lake Gulbinas 2007. Scientific Reports. Institute of Botany, Lithuanian State Science and Studies Foundation, Nr G-53/07, Lithuania, 55 p. [Google Scholar]
  • Garunkštis A. 1988. Water Reserves of Lithuania. Mokslas. Vilnius, 200 p. [Google Scholar]
  • Gergel SE, Turner MG, Miller JR, Melack JM, Stanley EH. 2002. Landscape indicators of human impacts to riverine systems. Aquat Sci 64: 118–128. [Google Scholar]
  • Giordani G, Bartoli M, Cattadori M, Viaroli P. 1996. Sulphide release from anoxic sediments in relation to iron availability and organic matter recalcitrance and its effect on inorganic phosphorus recycling. Hydrobiologia 329: 211–222. [Google Scholar]
  • Granéli W. 1999. Internal phosphorus loading in Lake Ringsjön. Hydrobiologia 404: 19–26. [Google Scholar]
  • Heijs SK, Azzoni R, Giordani G, et al. 2000. Sulfide induced release of phosphate from sediments of coastal lagoons and the possible relation to the disappearance of Ruppia sp. Aquat Microb Ecol 23: 85–95. [Google Scholar]
  • Holmer M, Storkholm P. 2001. Sulphate reduction and sulphur cycling in lake sediments: a review. Freshw Biol 46: 431–451. [Google Scholar]
  • Hou D, He J, Lü Ch, Sun Y, Zhang F, Otgonbayar K. 2013. Effects of environmental factors on nutrients release at sediment-water interface and assessment of trophic status for a typical shallow lake, Northwest China. Sci World J, 16 p. [Google Scholar]
  • Jenny JP, Francus P, Normandeau A, et al. 2016. Global spread of hypoxia in freshwater ecosystems during the last three centuries is caused by rising local human pressure. Glob Change Biol 22: 1481–1489. [CrossRef] [Google Scholar]
  • Jeppesen E, Søndergaard M, Kronvang B, Jensen JP, Svendsen LM, Lauridsen TL. 1999. Lake and catchment management in Denmark. Hydrobiologia 395–396: 419–432. [Google Scholar]
  • Johnson LB, Richards C, Host GE, Arthur JW. 1997. Landscape influences on water chemistry in midwestern stream ecosystems. Freshw Biol 37: 193–208. [Google Scholar]
  • Kavaliauskienė J. 1996. Algae of Lithuanian Lakes. Vilnius. 173 p. [Google Scholar]
  • Kilkus K. 1986. Lithuanian reserves lakes. Vilnius; Mokslas, pp. 50–55. [Google Scholar]
  • Kilkus K, Bernatonis M. 2003. Thermics, oxygen regime and water conductivity of Lake Balsys and Gulbinas. Geografija 39: 10–15. [Google Scholar]
  • Kilkus K. 2005. Limnology. Vilnius: VU Press, Lithuania. 271 pp. [Google Scholar]
  • Kleeberg A. 1997. Interactions between benthic phosphorus release and sulfur cycling in Lake Scharmützelsee (Germany). Water Air Soil Pollut 99: 391–399. [Google Scholar]
  • Klimkaitė I. 1963. Hydrochemistry of Riešė River basin Lakes. In: Bieliukas K, ed. Study of Lakes and Wetlands. Vilnius 15: 93–196. [Google Scholar]
  • Kosolapov DB, Rogozin DYu, Gladchenko IA, Kopylov AI, Zakharova EE. 2003. Microbial sulfate reduction in a brackish meromictic steppe Lake. Aquat Ecol 37: 215–226. [Google Scholar]
  • Krevš A, Kučinskienė A. 2012. Microbial decomposition of organic matter in the bottom sediments of small lakes of the urban landscape (Lithuania). Microbiology 81: 477–483. [Google Scholar]
  • Krevš A, Kučinskienė A. 2018. Microbial decomposition of sedimentary organic matter in small temperate lakes. Fundam Appl Limnol 191: 239–251. [CrossRef] [Google Scholar]
  • Kubera Ł, Donderski W. 2017. Distribution and activity of benthic bacteria in four lakes in the Bory Tucholskie National Park (Poland). Aquat Microb Ecol 79: 127–135. [Google Scholar]
  • Kuznetsov SI, Dubinina GA. 1989. Methods of investigation of aquatic microorganisms. Moscow: Nauka, 285 p. (in Russian). [Google Scholar]
  • Lang C, Lods-Croset B. 1997. Oligochaetes versus chironomids as indicators of trophic state in two Swiss lakes recovering from europhication. Arch Hydrobiol 139: 187–195. [Google Scholar]
  • Li Z, Sheng Y, Yang J, Burton ED. 2016. Phosphorus release from coastal sediments: impacts of the oxidation-reduction potential and sulfide. Mar Pollut Bull 113: 176–181. [Google Scholar]
  • Linkeviciene R, Taminskas J, Simanauskiene R. 2004. The influence of the lake basin and the lakeside area on the evolution of organogenic littoral zone. Geogr Yearbook 37: 35–46. [Google Scholar]
  • Lithuanian Hydrometeorological Service under the Ministry of Environment, 2019 [Google Scholar]
  • Mainstone CP, Parr W. 2002. Phosphorus in rivers − ecology and management. Sci Total Environ 282–283: 25–47. [Google Scholar]
  • Marce R, Rodriguez-Arias MA, Garcia JC, Armengol J. 2010. El Niño Southern Oscillation and climate trends impact reservoir water quality. Glob Change Biol 16: 2857–2865. [CrossRef] [Google Scholar]
  • Margaritora FG, Bazzanti M, Ferrara O, Mastrantuono L, Seminara M, Vagaggini D. 2003. Classification of the ecological status of volcanic lakes in Central Italy. J Limnol 62: 49–59. [Google Scholar]
  • Margaritora FG, Fumanti B, Alfinito S, et al. 2005. Trophic condition of the volcanic Lake Nemi (Central Italy): environmental factors and planktonic communities in a changing environment. J Limnol 64: 119–128. [Google Scholar]
  • Megonigal JP, Hines ME, Visscher PT. 2004. Anaerobic metabolism: linkages to trace gases and aerobic processes. In: Schlesinger WH, ed. Biogeochemistry. Oxford, UK: Elsevier-Pergamon, 317–424. [Google Scholar]
  • Mehner T, Diekmann M, Gonsiorczyk T, et al. 2008. Rapid recovery from eutrophication of a stratified lake by disruption of internal nutrient load. Ecosystems 11: 1142–1156. [Google Scholar]
  • Middelburg JJ, Levin L. 2009. Coastal hypoxia and sediment biogeochemistry. Biogeosciences 6: 1273–1293. [Google Scholar]
  • Moore JW, Schindler DE, Scheuerell MD, Smith D, Frodge J. 2003. Lake eutrophication at the urban fringe, Seattle region, USA. Ambio: 32: 8–13. [CrossRef] [Google Scholar]
  • Murray TE. 1995. The correlation between iron sulfide precipitation and hypolimnetic phosphorus accumulation during one summer in a softwater lake. Can J Fish Aquat Sci 52: 1190–1194. [Google Scholar]
  • Nowlin WH, Evarts JL, Vanni MJ. 2005. Release rates and potential fates of nitrogen and phosphorus from sediments in a eutrophic reservoir. Freshw Biol 50: 301–322. [Google Scholar]
  • Nürnberg GK. 1996. Comment: Phosphorus budgets and stoichiometry during the open-water season in two unmanipulated lakes in the Experimental Lakes Area, northwestern Ontario. Can J Fish Aquat Sci 53: 1469–1471. [Google Scholar]
  • Porter K, Feig YS. 1980. The use of DAPI for identifying and counting aquatic microflora. Limn Oceanogr 25: 943–948. [CrossRef] [Google Scholar]
  • Postgate JR. 1984. The sulfate reducing bacteria. 2nd edn. Cambridge Univ. Press, 208 pp. [Google Scholar]
  • Roden EE, Edmonds JW. 1997. Phosphate mobilization in iron-rich anaerobic sediments: microbial Fe(III) oxide reduction versus iron-sulfide formation. Arch Hydrobiol 139: 347–378. [Google Scholar]
  • Rosenberg DM, Resh VH. 1993. Introduction to freshwater biomonitoring and benthic macroinvertebrates. In Rosenberg DM, Resh VH, eds. Freshwater biomonitoring and benthic macroinvertebrates. New York: Chapman/Hall, pp. 1–9. [Google Scholar]
  • Samarkin VA, Rivkina EM, Pachersky YaA. 1992. Biogeochemical processes in impoundments and their impact on water quality. In Degens ET, Kempe S, Lein AYu, Sorokin YuI, eds. Interactions of bigeochemical cycles in aquaeous ecosystems. Hamburg 7: 85–92. [Google Scholar]
  • Shadrin NV, EL-Shabrawy GM, Anufriieva EV, Goher ME, Ragab E. 2016. Long-term changes of physicochemical parameters and benthos in Lake Qarun (Egypt): can we make a correct forecast of ecosystem future? Knowl Manag Aquat Ecosyst 417: 18. [CrossRef] [Google Scholar]
  • Smith VH. 2003. Eutrophication of freshwater and coastal marine ecosystems: a global problem. Environ Sci Pollut Res 10: 126–139. [CrossRef] [Google Scholar]
  • Smolders A, Roelofs JGM. 1993. Sulphate-mediated iron limitation and eutrophication in aquatic ecosystems. Aquat Bot 46: 247–253. [Google Scholar]
  • Søndergaard M, Jeppesen E, Lauridsen TL, et al. 2007. Lake restoration: successes, failures and long-term effects. J Appl Ecol 44: 1095–1105. [Google Scholar]
  • Sorokin J. 1999. Aquatic microbial ecology. Backhaus Publishers. 247 p. [Google Scholar]
  • Sterner RW. 2008. On the phosphorus limitation paradigm for lakes. Int Rev Hydrobiol 93: 433–445. [Google Scholar]
  • Studies of Lithuanian lakes eutrophication and their development forecast. 1989. Scientific Reports. Department of Geography, Institute of Zoology and Parasitology, Lithuania. 266 p. [Google Scholar]
  • Takashima M. 2018 Enhanced phosphate release from anaerobically digested sludge through sulfate reduction. Waste Biomass Valoriz: 1–7. [Google Scholar]
  • Taminskas J, Linkevičienė R, Šimanauskienė R. 2004. The influence of the use of lakes on the evolution of organogenic littoral zones. Geogr Yearbook 37: 47–53. [Google Scholar]
  • Torres IC, Inglett KS, Reddy KR. 2011. Heterotrophic microbial activity in lake sediments: effects of organic electron donors. Biogeochem 104: 165–181. [CrossRef] [Google Scholar]
  • Urban NR, Brezonik PL, Baker LA, Sherman LA. 1994. Sulfate reduction and diffusion in sediments of little rock lake, Wiskonsin. Limn Oceanogr 39: 797–815. [CrossRef] [Google Scholar]
  • Volkov II, Zhabina N. 1980. Methods for determination of various sulfur compounds in marine sediments. Moscow: Nauka. 216 p. (in Russian). [Google Scholar]
  • Wang L, Liang T. 2015. Distribution characteristics of phosphorus in the sediments and overlying water of Poyang Lake. PloS One 10: e0125859. [Google Scholar]
  • Yang X, Wu X, Hao H, He Z. 2008. Mechanisms and assessment of water eutrophication. J Zhejiang Univ Sci B 9: 197–209. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.