Knowl. Manag. Aquat. Ecosyst.
Number 420, 2019
Topical Issue on Fish Ecology
Article Number 38
Number of page(s) 10
Published online 11 October 2019
  • Anonymous. 2015. Ežeru ir tvenkiniu būklė. 2015 valstybiniu ežeru monitoringo duomenys [The conditions of lakes and ponds. 2015 monitoring data of state lakes]. Aplinkos apsaugos agentūra, Vilnius. (In Lithuanian). Available from Accessed on 03 June 2015. [Google Scholar]
  • Arbačiauskas K, Rakauskas V, Virbickas T. 2010. Initial and long-term consequences of attempts to improve fish-food resources in Lithuanian waters by introducing alien peracaridan species: a retrospective overview. J Appl Ichthyol 26: 28–37. [Google Scholar]
  • Arbačiauskas K, Višinskienė G, Smilgevičienė S, Rakauskas V. 2012. Nonindigenous macroinvertebrate species in Lithuanian fresh waters, Part 1: Distributions, dispersal and future. Knowl Manag Aquat Ecosyst 402: 1–18. [Google Scholar]
  • Arbačiauskas K, Lesutienė J, Gasiūnaitė ZR. 2013. Feeding strategies and elemental composition in Ponto-Caspian peracaridans from contrasting environments: can stoichiometric plasticity promote invasion success? Freshwater Biol 58: 1052–1068. [CrossRef] [Google Scholar]
  • Arbačiauskas K, Šidagytė E, Šniaukštaite V, Lesutienė J. 2018. Range expansion of Ponto-Caspian peracaridan Crustaceans in the Baltic Sea basin and its aftermath: Lessons from Lithuania. Aquat Ecosyst Health 20: 393–401. [Google Scholar]
  • Audzijonytė A, Baltrūnaitė L, Väinölä R, Arbačiauskas K. 2017. Human-mediated lineage admixture in an expanding Ponto Caspian crustacean species Paramysis lacustris created a novel genetic stock that now occupies European waters. Biol Invasions 19: 2443–2457. [Google Scholar]
  • Borcherding J, Murawski S, Arndt H. 2006. Populations ecology, vertical migration and feeding of the Ponto-Caspian invader Hemimysis anomala in a gravel-pit lake connected to the River Rhine. Freshwater Biol 51: 2376–2387. [CrossRef] [Google Scholar]
  • Borodich ND, Havlena FK. 1973. The biology of mysids acclimatized in the reservoirs of the Volga River. Hidrobiologia 42: 527–539. [CrossRef] [Google Scholar]
  • Borza P, Kovács K, György A, Török JK, Egri A. 2019. The Ponto-Caspian mysid Paramysis lacustris (Czerniavsky, 1882) has colonized the Middle Danube. Knowl Manag Aquat Ecosyst 420: 1. [CrossRef] [Google Scholar]
  • Bowles EC, Rieman BE, Mauser GR, Bennett D.H. 1991. Effects of introductions of Mysis relicta on fisheries in Northern Idaho. American Fisheries Society Symposium 9: 65–74. [Google Scholar]
  • Bubinas A. 1979. Feeding of fish in the Kaunas hydro-electric plant water reservoir by acclimatized in it Mysidae of Mesomysis kowalewskyi Czern. (Paramysis lacustris) of the Caspian complex [Pitanije ryb vodokhranilischa Kaunasskoj GES akklimatizirovannymi v nem mizidami Kaspijskogo reliktovogo kompleksa Mesomysis kowalewskyi Czern. (Paramysis lacustris)]. LTSR MA Darbai, Serija B 88: 79–85 (In Russian). [Google Scholar]
  • Chess DW, Stanford JW. 1998. Comparative energetics and life cycle of the opossum shrimp (Mysis relicta) in native and non-native environments. Freshw Biol , in press. [Google Scholar]
  • David P, Thébault E, Anneville O, Duyck PF, Chapuis E, Loeuille N. 2017. Chapter One − Impacts of Invasive Species on Food Webs: A Review of Empirical Data. Adv Ecol Res 56: 1–60. [Google Scholar]
  • DeNiro M, Epstein S. 1977. Mechanism of carbon isotope fractionation associated with lipid synthesis. Science 197: 261–263. [Google Scholar]
  • Feuchtmayr H, Grey J. 2003. Effect of preparation and preservation procedures on carbon and nitrogen stable isotope determinations from zooplankton. Rapid Commun Mass Spectrom 17: 2605–2610. [CrossRef] [PubMed] [Google Scholar]
  • Fink P, Kottsieper A, Heynen M, Borcherding J. 2012. Selective zooplanktivory of an invasive Ponto-Caspian mysid and possible consequences for the zooplankton community structure of invaded habitats. Aquat Sci 74: 191–202. [Google Scholar]
  • Gal G, Loew ER, Rudstam LG, Mohammadian M.A. 1999. Light and diel vertical migration: spectral sensitivity and light avoidance by Mysis relicta . Can J Fish Aquat Sci 56: 311–322. [Google Scholar]
  • Gasiūnas I. 1963. The acclimatization of fodder crustaceans (of the Caspian relict type) into the reservoir of Kaunas Hydroelectric power station and the possibility of their transference into other water bodies in Lithuania [Akklimatizacija kormovykh rakoobraznykh (Kaspijskogo reliktovogo tipa) v vodokhranilische Kaunasskoj GES i vozmozhnosti ikh pereselenija v drugie vodojemy Litvy]. LTSR MA Darbai Serija C 1: 79–85 (In Russian). [Google Scholar]
  • Gasiūnas I. 1965. On the results of the acclimatization of food invertebrates of the Caspian complex in Lithuanian water bodies [O rezultatakh akklimatizacii kormovykh bespozvonochnykh Kaspijskogo kompleksa v vodoemakh Litvy]. Zoologicheskij Zhurnal 44; 340–343 (In Russian). [Google Scholar]
  • Gasiūnas I. 1972. Enrichment of fodder basis of water bodies of Lithuania by acclimatized crustaceans-like organisms from the Caspian Sea complex [Obogoschenie kormovoj bazy ryb vodoemov Litvy akklimatizirovannymi rakoobraznymi Kaspijskogo kompleksa]. In: Maniukas J, Virbickas J. (Eds). On the breeding of fish and crustacean-like organisms in the water bodies of Lithuania [Voprosy razvedenija ryb i rakoobraznykh v vodoemakh Litvy]. Vilnius, Lithuania: Mintis Publishers, pp. 57–68 (In Russian). [Google Scholar]
  • Gearing JN. 1991. The study of diet and trophic relationships through natural abundance 13C. In: Coleman DC, Fry B. (Eds). Carbon Isotope techniques. San Diego: Academic Press, pp. 201–218. [CrossRef] [Google Scholar]
  • Gorokhova E, Hansson S. 1999. An experimental study on variations in stable carbon and nitrogen isotopes fractionation during growth of Mysis mixta and Neomysis integer . Can J Fish Aquat Sci 56: 2203–2210. [Google Scholar]
  • Grey J. 2006. The use of stable isotope analyses in freshwater ecology: current awareness. Pol J Ecol 54: 563–584. [Google Scholar]
  • Hjelm J, Persson L, Christensen B. 2000. Growth, morphological variation and ontogenetic niche shifts in perch (Perca flviatilis) in relation to resource availability. Oecologia 122: 190–199. [CrossRef] [PubMed] [Google Scholar]
  • Hyslop EJ. 1980. Stomach contents analysis − a review of methods and their application. J Fish Biol 17: 411–429. [Google Scholar]
  • Jackson MC, Wasserman RJ, Grey J, Ricciardi A, Dick JTA, Alexander ME. 2017. Chapter Two − Novel and Disrupted Trophic Links Following Invasion in Freshwater Ecosystems. Adv Ecol Res 57: 55–97. [Google Scholar]
  • Jankauskienė R. 2003. Selective feeding of Ponto-Caspian higher crustaceans and fish larvae in the littoral zone of the Curonian Lagoon. Ekologija 2: 19–27. [Google Scholar]
  • Johannsson OE, Leggett MF, Rudstam LG, Servos MR, Mohammadian MA, Gal G, Dermott RM, Hesslein RH. 2001. Diet of Mysis relicta in Lake Ontario as revealed by stable isotope and gut content analysis. Can J Fish Aquat Sci 58: 1975–1986. [Google Scholar]
  • Ketelaars HAM, Lambregts-van de Clundert FE, Carpentier CJ, Wagenvoort AJ, Hoogenboezem W. 1999. Ecological effects of the mass occurrence of the Ponto Caspian invader, Hemimysis anomala G. O. Sars., 1907 (Crustacea: Mysidacea), in a freshwater storage reservoir and in the Netherlands, with notes on its autecology and new records. Hydrobiologia 394: 233–248. [Google Scholar]
  • Koksvik J, Reinertsen H, Langeland A. 1991. Changes in planktono biomass and species composition in Lakes Jonsvatn, Norway, following the establishment of Mysis relicta . Am Fish S S 9: 115–125. [Google Scholar]
  • Komarova TI. 1991. Mysids (Mysidacea). Fauna Ukrainy 26 (7). Kiev: Akademia Nauk Ukrainy, 104 (In Russian). [Google Scholar]
  • Kublickas A, Bubinas A. 1985. The effect of acclimatized crustacea on the fsh nutrition in the littoral zone of the Curonian Lagoon [Роль акклиматизированных ракообразных в питании рыб литоральной зоны Куршского залива]. Acta Hydrobiologica Lituanica 5: 80–85 (In Russian). [Google Scholar]
  • Langeland A, Koksvik JI, Nydal. 1991. Impact of the introduction of Mysis relicta on the zooplankton and fish populations in a Norwegian lake. Am Fish S S 9: 98–114. [Google Scholar]
  • Lasenby DC, Northcote TG, Furst M. 1986. Theory, practise, and effects of Mysids relicta introductions to North American and Scandinavian lakes. Can J Fish Aquat Sci 43: 1277–1284. [Google Scholar]
  • Lasenby DC, Shi Y. 2004. Changes in the elemental composition of the stomach contents of the opossum shrimp Mysis relicta during diel vertical migration. Can J Zool 82: 525–528. [Google Scholar]
  • Lesutienė J, Gorokhova E, Gasiunaite ZR, Razinkovas A. 2007. Isotopic evidence for zooplankton as an important food source for the mysid Paramysis lacustrisin the Curonian Lagoon, the South-Eastern Baltic Sea. Estuar Coast Shelf S 73: 73–80. [CrossRef] [Google Scholar]
  • Ložys L. 2003. Seasonal migrations of pikeperch (Sander lucioperca L.) from the Curonian lagoon to the Baltic Sea and advantages of the phenomenon. Acta Zool Litu 13: 188–194. [CrossRef] [Google Scholar]
  • Mauchline, J. 1980. The biology of mysids and euphausids. Adv Mar Biol 18: 81–97. [Google Scholar]
  • Post DM. 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83: 703–718. [Google Scholar]
  • Rakauskas V, Smilgevičienė S, Arbačiauskas K. 2010. The impact of introduced Ponto-Caspian amphipods and mysids on perch (Perca fluviatilis) diet in Lithuanian lakes. Acta Zoolog Lituanica 20: 189–197. [CrossRef] [Google Scholar]
  • Ricciardi A, Avlijas S, Marty J. 2012. Forecasting the ecological impacts of the Hemimysis anomala invasion in North America: Lessons from other freshwater mysids introductions. J Great Lakes Res 38: 7–13. [Google Scholar]
  • Rieman BE, Falter CM. 1981. Effects of the establishment of Mysis relicta on the macrozooplankton of a large lake. Trans Am Fish Soc 110: 613–620. [Google Scholar]
  • Siegfried CA, Kopache ME. 1980. Feeding of Neomysis merceddis (Holmes). Biol Bull 159: 193–205. [Google Scholar]
  • Spencer CN, McClelland BR, Stanford JA. 1991. Shrimp stocking, salmon collapse and eagle displacement: cascading interactions in the food web of a large aquatic ecosystem. BioScience 41, 14–21. [Google Scholar]
  • Spencer CN, Potter DS, Bukantis RT, Stanford JA. 1999. Impact of predation by Mysis relicta on zooplankton in Flathead Lake, Montana, USA. J Plankton Res 21: 51–64. [Google Scholar]
  • Svanbäck R, Eklöv P. 2002. Effects of habitat and food resources on morphology and ontogenetic growth trajectories in perch. Oecologia 131: 61–70. [CrossRef] [PubMed] [Google Scholar]
  • Syväranta J, Högmander P, Keskinen T, Karjalainen J, Jones RI. 2011. Altered energy flow pathways in a lake ecosystem following manipulation of fish community structure. Aquat Sci 73: 79–89. [Google Scholar]
  • Tieszen LL, Boutton TW, Tesdahl K, Slade NA. 1983. Fractionation and turnover of stable carbon isotopes in animal tissues: implications for δ 13C analysis of diet. Oecologia 57: 32–37. [CrossRef] [PubMed] [Google Scholar]
  • Tohtz J. 1993. Lake whitefish diet and growth after the introduction of Mysis relicta to Flathead Lake, Montana. Trans Am Fish Soc 122: 629–635. [Google Scholar]
  • Vaitonis G, Lazauskiene L, Razinkov A. 1990. Study of results of economic efficiency, and perspectives of acclimatization of invertebrates in the Baltic water bodies [Izuchenije rezultatov ekonomicheskoj effektivnosti i perspektivy akklimatizacii bezpozvonochnykh v vodoemakh Pribaltiki]. Scientific research report, Institute of Ecology, Vilnius, 1–67. (In Russian). [Google Scholar]
  • Virbickas T. 2013. Fish fauna studies in Lithuanian rivers and lakes and their ecological status assessment based on the fish fauna metrics [Ichtiofaunos tyrimai bei ekologinės būklės pagal žuvu rodiklius įvertinimas Lietuvos upėse ir ežeruose]. Scientific research report, Environment Protection Agency, Vilnius, Lithuania. (In Lithuanian). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.