Open Access
Knowl. Manag. Aquat. Ecosyst.
Number 420, 2019
Article Number 36
Number of page(s) 14
Published online 22 August 2019
  • Abdo MH. 2005. Physico-chemical characteristics of Abu Za'baal ponds, Egypt. Egypt J Aquat Res 31: 1–15. [Google Scholar]
  • Alves AS, Adão H, Ferrero TJ, Marques JC, Costa MJ, Patrício J. 2013. Benthic meiofauna as indicator of ecological changes in estuarine ecosystems: the use of nematodes in ecological quality assessment. Ecol Indic 24: 462–475. [Google Scholar]
  • Anufriieva EV. 2015. Do copepods inhabit hypersaline waters worldwide? A short review and discussion. Chin J Oceanol Limn 33: 1354–1361. [CrossRef] [Google Scholar]
  • Anufriieva E, Hołyńska M, Shadrin N. 2014. Current invasions of Asian Cyclopid species (Copepoda: Cyclopidae) in Crimea, with taxonomical and zoogeographical remarks on the hypersaline and freshwater fauna. Ann Zool 64: 109–130. [CrossRef] [Google Scholar]
  • Anufriieva EV, Kolesnikova EA, Shadrin NV. 2019. Distribution and population dynamics of the highly halotolerant species Eucypris mareotica (Fischer, 1855) (Crustacea, Ostracoda) in hypersaline lakes of Crimea. Inland Water Biol 12: 170–177. [CrossRef] [Google Scholar]
  • Armonies W. 1988. Physical factors influencing active emergence of meiofauna from boreal intertidal sediment. Mar Ecol Prog Ser 49: 277–286. [Google Scholar]
  • Boulion VV, Anokhin LE, Arakelova EU. 1989. Primary production of the hypehaline lakes in Crimea. Trudy Zoologicheskogo Instituta 205: 14–25 (in Russian). [Google Scholar]
  • Carrasco NK, Perissinotto R. 2012. Development of a halotolerant community in the St. Lucia Estuary (South Africa) during a hypersaline phase. PloS One 7: e 29927. [Google Scholar]
  • Carugati L, Gatto B, Rastelli E, Martire ML, Coral C, Greco S, Danovaro R. 2018. Impact of mangrove forests degradation on biodiversity and ecosystem functioning. Sci Rep 8: 13298. [CrossRef] [PubMed] [Google Scholar]
  • De Lomas JG, Corzo A, Garcia CM, Van Bergeijk SA. 2005. Microbenthos in a hypersaline tidal lagoon: factors affecting microhabitat, community structure and mass exchange at the sediment-water interface. Aquat Microb Ecol 38: 53–69. [Google Scholar]
  • Drapun I, Anufriieva E, Shadrin N, Zagorodnyaya Y. 2017. Ostracods in the plankton of the Sivash Bay (the Sea of Azov) during its transformation from brackish to hypersaline state. Ecol Montenegrina 14: 102–108. [Google Scholar]
  • Elloumi J, Carrias JF, Ayadi H, Sime-Ngando T, Boukhris M, Bouaïn A. 2006. Composition and distribution of planktonic ciliates from ponds of different salinity in the solar saltwork of Sfax, Tunisia. Estuar Coast Shelf Sci 67: 21–29. [Google Scholar]
  • El-Shabrawy GM, Anufriieva EV, Germoush MO, Goher ME, Shadrin NV. 2015. Does salinity change determine zooplankton variability in the saline Qarun Lake (Egypt)? Chin J Oceanol Limn 33: 1368–1377. [CrossRef] [Google Scholar]
  • El-Shabrawy GM, Anufriieva EV, Shadrin NV. 2018. Tintinnina (Ciliophora) and Foraminifera in plankton of hypersaline Lagoon Bardawil (Egypt): spatial and temporal variability. Turk J Zool 42: 218–229. [CrossRef] [Google Scholar]
  • Farkas J, Bådsvik CY, Altin D, Nordtug T, Olsen AJ, Hansen BH. 2017. Acute and physical effects of water-based drilling mud in the marine copepod Calanus finmarchicus . J Toxicol Environ Health A 80: 907–915. [CrossRef] [PubMed] [Google Scholar]
  • Ferrarin C, Umgiesser G. 2005. Hydrodynamic modeling of a coastal lagoon: the Cabras lagoon in Sardinia, Italy. Ecol Modell 188: 340–357. [Google Scholar]
  • Filippov AA, Komendantov AY. 1995. The salinity tolerance of benthic invertebrates of the Aral Sea. Int J Salt Lake Res 4: 251–263. [CrossRef] [Google Scholar]
  • Gambi C, Totti C, Manini E. 2003. Impact of organic loads and environmental gradients on microphytobenthos and meiofaunal distribution in a coastal lagoon. Chem Ecol 19: 207–223. [CrossRef] [Google Scholar]
  • Ghale YA, Altunkaynak A, Unal A. 2018. Investigation anthropogenic impacts and climate factors on drying up of Urmia Lake using water budget and drought analysis. Water Resour Manag 32: 325–337. [CrossRef] [Google Scholar]
  • Giere O. 1993. Meiobenthology: the microscopic fauna in aquatic sediments. Berlin: Springer-Verlag, 328 p. [Google Scholar]
  • Golubkov SM, Shadrin NV, Golubkov MS, Balushkina EV, Litvinchuk LF. 2018. Food chains and their dynamics in ecosystems of shallow lakes with different water salinities. Russ J Ecol 49: 442–448. [CrossRef] [Google Scholar]
  • Gyedu-Ababio TK, Baird D. 2006. Response of meiofauna and nematode communities to increased levels of contaminants in a laboratory microcosm experiment. Ecotoxicol Environ Saf 63: 443–450. [CrossRef] [PubMed] [Google Scholar]
  • Jones E, Qadir M, van Vliet MTH, Smakhtin V, Kang SM. 2019. The state of desalination and brine production: A global outlook. Sci Total Environ 657: 1343–1356. [PubMed] [Google Scholar]
  • Jordan TE, Cornwell JC, Boynton WR, Anderson JT. 2008. Changes in phosphorus biogeochemistry along an estuarine salinity gradient: The iron conveyer belt. Limnol Oceanogr 53: 172–184. [Google Scholar]
  • Kolesnikova EA, Anufriieva EV, Latushkin AA, Shadrin NV. 2017. Mesochra rostrata Gurney, 1927 (Copepoda, Harpacticoida) in Sivash Bay (Sea of Azov): Is it a new alien species or a relict of Tethys? Russ J Biol Invasions 8: 244–250. [CrossRef] [Google Scholar]
  • Kolesnikova EA, Mazlumyan SA, Shadrin NV. 2008. Seasonal dynamics of meiobenthos fauna from a salt lake of the Crimea, in The Firth International Conference of Environmental Micropaleontology, Microbiology and Meiobenthology (EMMM), Chennai, India, 155–158. [Google Scholar]
  • Levin LA, Ekau W, Gooday AJ, Jorissen F, Middelburg JJ, Naqvi SWA, Zhang J. 2009. Effects of natural and human-induced hypoxia on coastal benthos. Biogeosciences 6: 2063–2098. [Google Scholar]
  • Lockwood D. 2019. Lakes and rivers are getting saltier. ACS Cent Sci 5: 376–379. [CrossRef] [PubMed] [Google Scholar]
  • López-González PJ, Guerrero F, Castro MC. 1997. Seasonal fluctuations in the plankton community in a hypersaline temporary lake (Honda, southern Spain). Int J Salt Lake Res 6: 353–371. [Google Scholar]
  • Mageed AAA. 2006. Spatio-temporal variations of zooplankton community in the hypersaline lagoon of Bardawil, North Sinai, Egypt. Egypt J Aquat Res 32: 168–183. [Google Scholar]
  • Mayer TD, Pilson SL. 2019. Interactions of water levels with water quality, endemic waterbirds, and invasive species in a shallow, tropical pond. Hydrobiologia 829: 77–93. [Google Scholar]
  • Micklin P, Aladin NV, Plotnikov I. 2016. Aral Sea. Berlin: Springer-Verlag, 453 p. [Google Scholar]
  • Mokievsky VO. 2009. Quantitative distribution of the meiobenthos in the Large Aral Sea in 2003 and 2004. J Mar Syst 76: 336–342. [Google Scholar]
  • Mokievsky VO, Miljutina MA. 2011. Nematodes in meiofauna of the Large Aral Sea during the desiccation phase: taxonomic composition and redescription of common species. Russ J Nematol 19: 31–43. [Google Scholar]
  • Moreno M, Ferrero TJ, Gallizia I, Vezzulli L, Albertelli G, Fabiano M. 2008. An assessment of the spatial heterogeneity of environmental disturbance within an enclosed harbour through the analysis of meiofauna and nematode assemblages. Estuar Coast Shelf Sci 77: 565–576. [Google Scholar]
  • Müller PH, Neuman P, Storm R. 1979. Tafeln der mathematischen statistik. Leipzig: VEB Fachbuchverlag, 272 p. [Google Scholar]
  • Ólafsson E, Carlström S, Ndaro SG. 2000. Meiobenthos of hypersaline tropical mangrove sediment in relation to spring tide inundation. Hydrobiologia 426: 57–64. [Google Scholar]
  • Pesenko JA. 1982. Principles and methods of quantitative analysis in faunal studies. Moscow: Nauka, 287 p. (in Russian). [Google Scholar]
  • Plotnikov IS. 2016. Long-term changes of the fauna of free-living aquatic invertebrates in the Aral Sea. St. Petersburg: ZIN RАS, 168 p. (in Russian) [Google Scholar]
  • Riera R, Tuya F, Sacramento A, Ramos E, Rodríguez M, Monterroso Ó. 2011. The effects of brine disposal on a subtidal meiofauna community. Estuar Coast Shelf Sci 93: 359–365. [Google Scholar]
  • Schallenberg M, Burns CW. 2003. A temperate, tidal lake-wetland complex 2. Water quality and implications for zooplankton community structure. New Zeal J Mar Fresh 37: 429–447. [CrossRef] [Google Scholar]
  • Segal RD, Waite AM, Hamilton DP. 2006. Transition from planktonic to benthic algal dominance along a salinity gradient. Hydrobiologia 556: 119–135. [Google Scholar]
  • Semprucci F, Frontalini F, Sbrocca C, du Chatelet EA, Bout-Roumazeilles V, Coccioni R, Balsamo M. 2015. Meiobenthos and free-living nematodes as tools for biomonitoring environments affected by riverine impact. Environ Monit Assess 187: 1–19. [CrossRef] [PubMed] [Google Scholar]
  • Sergeeva NG, Shadrin NV, Anufriieva EV. 2019. Long-term changes (1979–2015) in the nematode fauna in Sivash Bay (Sea of Azov), Russia, worldwide the largest hypersaline lagoon, during salinity transformations. Nematology 21: 337–347. [CrossRef] [Google Scholar]
  • Shadkam S, Ludwig F, van Oel P, Kirmit Ç, Kabat P. 2016. Impacts of climate change and water resources development on the declining inflow into Iran's Urmia Lake. J Great Lakes Res 42: 942–952. [Google Scholar]
  • Shadrin N. 2018. Hypersaline lakes as the polyextreme habitats for life, in Zheng M, Deng T, Oren A (Eds.), Introduction to salt lake sciences. Beijing: Science Press, pp. 180–187. [Google Scholar]
  • Shadrin NV, Anufriieva EV. 2013. Climate change impact on the marine lakes and their Crustaceans: The case of marine hypersaline Lake Bakalskoye (Ukraine). Turk J Fish Aquat Sci 13: 603–611. [CrossRef] [Google Scholar]
  • Shadrin NV, Anufriieva EV. 2018. Ecosystems of hypersaline waters: structure and trophic relations. Zh Obshch Biol 79: 418–427 (in Russian) [Google Scholar]
  • Shadrin NV, Anufriieva EV, Kipriyanova LM, Kolesnikova ЕА, Latushkin AA, Romanov RE, Sergeeva NG. 2018. The political decision caused the drastic ecosystem shift of the Sivash Bay (the Sea of Azov). Quat Int 475: 4–10. [Google Scholar]
  • Shadrin N, Litvinchuk L. 2005. Impact of increased mineral particle concentration on the behavior, suspension-feeding and reproduction of Acartia clausi (Copepoda), in Dame RF, Olenin S (Eds.), The comparative roles of suspension-feeders in ecosystems. Dordrecht: Springer, pp. 137–146. [CrossRef] [Google Scholar]
  • Shen TJ, Chao A, Lin CF. 2003. Predicting the number of new species in further taxonomic sampling. Ecology 84: 798–804. [CrossRef] [Google Scholar]
  • Soloveva OV, Tikhonova EA, Alemov SV, Burdiyan NV, Viter TV, Guseva EV, Kotelyanets EA, Bogdanova TA. 2019. Ecological state of the southeastern part of Sivash Bay (Sea of Azov) under conditions of changing salinity. Contemp Probl Ecol 12: 179–188. [CrossRef] [Google Scholar]
  • Suzuki MS, Ovalle AR, Pereira EA. 1998. Effects of sand bar openings on some limnological variables in a hypertrophic tropical coastal lagoon of Brazil. Hydrobiologia 368: 111–122. [CrossRef] [Google Scholar]
  • Telesh IV, Khlebovich VV. 2010. Principal processes within the estuarine salinity gradient: a review. Marine Poll Bull 61: 149–155. [CrossRef] [Google Scholar]
  • Velasco J, Millán A, Hernández J, Gutiérrez C, Abellán P, Sánchez D, Ruiz M. 2006. Response of biotic communities to salinity changes in a Mediterranean hypersaline stream. Saline Syst 2: 12. [CrossRef] [PubMed] [Google Scholar]
  • Vorobyev VP. 1940. Hydrobiological essay on the Eastern Sivash and its potential for fisheries. Proc AzCherNIRO 12: 69–164 (in Russian). [Google Scholar]
  • Zeppilli D, Leduc D, Fontanier C, Fontaneto D, Fuchs S, Gooday AJ, Goineau A, Ingels J, Ivanenko VN, Kristensen RM, Neves RC. 2018. Characteristics of meiofauna in extreme marine ecosystems: a review. Mar Biodivers 48: 35–71. [CrossRef] [Google Scholar]
  • Zulkifly S, Hanshew A, Young EB, Lee P, Graham ME, Piotrowski M, Graham LE. 2012. The epiphytic microbiota of the globally widespread macroalga Cladophora glomerata (Chlorophyta, Cladophorales). Am J Bot 99: 1541–1552. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.