Open Access
Knowl. Manag. Aquat. Ecosyst.
Number 420, 2019
Article Number 35
Number of page(s) 11
Published online 13 August 2019
  • Acharyya T, Sarma VVSS, Sridevi B, Venkataramana V, Bharathi MD, Naidu SA, Kumar BSK, Prasad VR, Bandyopadhyay D, Reddy NPC, Kumar MD. 2012. Reduced river discharge intensifies phytoplankton bloom in Godavari estuary. India Mar Chem 132: 15–22. [CrossRef] [Google Scholar]
  • Allende L, Fontanarrosa MS, Murno A, Sinistro R. 2019. Phytoplankton functional group classifications as a tool for biomonitoring shallow lakes: a case study. Knowl Manag Aquat Ecosyst 14. [Google Scholar]
  • Behmel S, Damour M, Ludwig R, Rodriguez, MJ. 2016. Water quality monitoring strategies – a review and future perspectives. Sci Total Environ 571: 1312–1329. [PubMed] [Google Scholar]
  • Bian B, Zhou Y, Fang BB. 2016. Distribution of heavy metals and benthic macroinvertebrates: impacts from typical inflow river sediments in the Taihu Basin, China. Ecol Indic 69: 348–359. [Google Scholar]
  • Chen YW, Qin BQ, Teubner K, Dokulil MT. 2003. Long-term dynamics of phytoplankton assemblages: Microcystis-domination in Lake Taihu, a large shallow lake in China. J Plankton Res 25: 445–453. [Google Scholar]
  • Clarke KR. 1993. Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18: 117–43. [CrossRef] [Google Scholar]
  • Deng JM, Xu CP, Chen YW, Shao XY, Gao JF. 2011. Comparison of the phytoplankton community in major rivers of the Taihu Basin. Resour Sci 33: 210–216 (Abstract in English). [Google Scholar]
  • Devercelli M, O'Farrell I. 2013. Factors affecting the structure and maintenance of phytoplankton functional groups in a nutrient rich lowland river. Limnologica 43: 67–78. [Google Scholar]
  • Du MY, Yu Y, Yang Z, Chen FZ, Zhang M, Rui Q, Kong FX. 2014. Characteristics of community structure of plankton in the Lake Taihu basin during the dry season of 2012. J Lake Sci 26: 724–734 (Abstract in English). [CrossRef] [Google Scholar]
  • Hillebrand H, Dürselen CD, Kirschtel D, Pollingher U, Zohary T. 1999. Biovolume calculation for pelagic and benthic microalgae. J Phycol 35: 403–424. [Google Scholar]
  • Holmes RW, Norris R, Smayda T, Wood EJF. 1969. Collection, fixation, identification, and enumeration of phytoplankton standing stock p. 17–46. In: Anon (Ed.), Recommended Procedures for Measuring the Productivity of Plankton Standing Stock and Related Oceanic Properties. Washington: National Academy of Sciences, pp. 1746. [Google Scholar]
  • Hu HJ, Wei YX. 2006. The freshwater algae of China: systematics, taxonomy and ecology. Beijing: Science Press (in Chinese). [Google Scholar]
  • Huang JC, Gao JF, Jiang Y, Yin HB, Amiri BJ. 2017. Sources, distribution and export coefficient of phosphorus in lowland polders of Lake Taihu Basin, China. Environ Pollut 231: 1274–1283. [Google Scholar]
  • Huszar VLM, Nabout JC, Appel MO, Santos JBO, Abe DS, Silva LHS. 2015. Environmental and not spatial processes (directional and non-directional) shape the phytoplankton composition and functional groups in a large subtropical river basin. J Plankton Res 37: 1190–1200. [Google Scholar]
  • Hutchins MG, Johnson AC, Deflandre-Vlandas A, Comber S, Posen P, Boorman D. 2010. Which offers more scope to suppress river phytoplankton blooms: reducing nutrient pollution or riparian shading? Sci Total Environ 408: 5065–5077. [PubMed] [Google Scholar]
  • Kruk C, Huszar VLM, Peeters E, Bonilla S, Costa L, Lurling M, Reynolds CS, Scheffer M. 2010. A morphological classification capturing functional variation in phytoplankton. Freshw Biol 55: 614–627. [Google Scholar]
  • Kruk C, Peeters E, Van Nes EH, Huszar VLM, Costa LS, Scheffer M. 2011. Phytoplankton community composition can be predicted best in terms of morphological groups. Limnol Oceanogr 56: 110–118. [Google Scholar]
  • Lange TR, Rada RG. 1993. Community dynamics in a typical navigation pool in the upper Mississippi River. J Iowa Acad Sci 100: 21–27. [Google Scholar]
  • Lapointe BE, Herren LW, Debortoli DD, Vogel MA. 2015. Evidence of sewage-driven eutrophication and harmful algal blooms in Florida's Indian River Lagoon. Harmful Algae 43: 82–102. [Google Scholar]
  • Legendre P, Troussellier M. 1988. Aquatic heterotrophic bacteria: modeling in the presence of spatial auto-correlation. Limnol Oceanogr 33: 1055–1067. [Google Scholar]
  • Liu Z, Jiang F, Zhu Y, Li F, Jin G. 2018. Spatial heterogeneity of leaf area index in a temperate old-growth forest: Spatial autocorrelation dominates over biotic and abiotic factors. Sci Total Environ 634: 287–295. [PubMed] [Google Scholar]
  • Mihaljevic M, Stevic F, Spoljaric D, Pfeiffer TZ. 2015. Spatial pattern of phytoplankton based on the morphology-based functional approach along a river-floodplain gradient. River Res Appl 31: 228–238. [Google Scholar]
  • Mu XY, Brower JC, Siegel DI, Fiorentino AJ, An SQ, Cai Y, Xu DL, Jiang H. 2015. Using integrated multivariate statistics to assess the hydrochemistry of surface water quality, Lake Taihu basin, China. J Limnol 74: 234–247. [Google Scholar]
  • Nilsson C, Reidy CA, Dynesius M, Revenga C. 2005. Fragmentation and flow regulation of the world's large river systems. Science 308: 405–408. [Google Scholar]
  • Olmanson LG, Brezonik PL, Bauer ME. 2013. Airborne hyperspectral remote sensing to assess spatial distribution of water quality characteristics in large rivers: the Mississippi River and its tributaries in Minnesota. Remote Sens Environ 130: 254–265. [Google Scholar]
  • Otten TG, Crosswell JR, Mackey S, Dreher TW. 2015. Application of molecular tools for microbial source tracking and public health risk assessment of a Microcystis bloom traversing 300 km of the Klamath River. Harmful Algae 46: 71–81. [Google Scholar]
  • Padisák J, Crossetti LO, Naselli-Flores L. 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621: 1–19. [Google Scholar]
  • Paerl HW, Huisman J. 2009. Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environ Microbiol Rep 1: 27–37. [CrossRef] [PubMed] [Google Scholar]
  • Paerl HW, Xu H, McCarthy MJ, Zhu GW, Qin BQ, Li YP, Gardner WS. 2011. Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): the need for a dual nutrient (N & P) management strategy. Water Res 45: 1973–1983. [CrossRef] [PubMed] [Google Scholar]
  • Qadir A, Malik RN, Husain SZ. 2008. Spatio-temporal variations in water quality of Nullah Aik-tributary of the river Chenab, Pakistan. Environ Monit Assess 140: 43–59. [CrossRef] [PubMed] [Google Scholar]
  • Qin BQ, Xu PZ, Wu QL, Luo LC, Zhang YL. 2007. Environmental issues of lake Taihu, China. Hydrobiologia 581: 3–14. [Google Scholar]
  • Reynolds CS. 1984. Phytoplankton periodicity: the interactions of form, function and environmental variability. Freshw Biol 14: 111–142. [Google Scholar]
  • Reynolds CS. 1988. Potamoplankton: paradigms, paradoxes, prognoses. In: Round FE. Ed. Algae and the Aquatic Environment. Bristol: Biopress Ltd., pp. 285–311. [Google Scholar]
  • Reynolds CS. 1995. River plankton: the paradigm regained. In: Harper DM, Ferguson AJD. Eds. The Ecological Basis for River Management. New York: Wiley, pp. 161–174. [Google Scholar]
  • Reynolds CS. 2000. Hydroecology of river plankton: the role of variability in channel flow. Hydrol Process 14: 3119–3132. [Google Scholar]
  • Reynolds C, Descy JP. 1996. The production, biomass and structure of phytoplankton in large rivers. Arch Hydrobiol/Suppl Large Rivers 113: 161–187. [Google Scholar]
  • Reynolds CS, Descy JP, Padisak J. 1994. Are phytoplankton dynamics in rivers so different from those in shallow lakes? Hydrobiologia 289: 1–7. [Google Scholar]
  • Reynolds CS, Huszar V, Kruk C, Naselli-Flores L, Melo S. 2002. Towards a functional classification of the freshwater phytoplankton. J Plankton Res 24: 417–428. [Google Scholar]
  • Salmaso N, Padisák J. 2007. Morpho-functional groups and phytoplankton development in two deep lakes (Lake Garda, Italy and Lake Stechlin, Germany). Hydrobiologia 578: 97–112. [Google Scholar]
  • Shen PP, Li G, Huang LM, Zhang JL, Tan YH. 2011. Spatio-temporal variability of phytoplankton assemblages in the Pearl River estuary, with special reference to the influence of turbidity and temperature. Cont Shelf Res 31: 1672–1681. [Google Scholar]
  • Singh KP, Malik A, Sinha S. 2005. Water quality assessment and apportionment of pollution sources of Gomti river (India) using multivariate statistical techniques − a case study. Anal Chim Acta 538: 355–374. [Google Scholar]
  • Stankovic I, Vlahovic T, Udovic MG, Varbiro G, Borics G. 2012. Phytoplankton functional and morpho-functional approach in large floodplain rivers. Hydrobiologia 698: 217–231. [Google Scholar]
  • Townsend SA, Douglas MM. 2017. Discharge-driven flood and seasonal patterns of phytoplankton biomass and composition of an Australian tropical savannah river. Hydrobiologia 794: 203–221. [Google Scholar]
  • Wehr JD, Descy JP. 1998. Use of phytoplankton in large river management. J Phycol 34: 741–749. [Google Scholar]
  • Wetzel RG. 2001. Limnology: Lake and River Ecosystems. San Diego: Academic Press. [Google Scholar]
  • Wu P, Qin BQ, Yu G, Deng JM, Zhou J. 2016. Effects of Nutrient on Algae Biomass during Summer and Winter in Inflow Rivers of Taihu Basin, China. Water Environ Res 88: 665–672. [CrossRef] [PubMed] [Google Scholar]
  • Wu ZS, Cai YJ, Chen YW, Shao XY, Gao JF. 2011. Assemblage structure investigation of macrozoobenthos and water quality bioassessment of the main river systems in Taihu Basin. J Lake Sci 23: 686–694 (abstract in English). [CrossRef] [Google Scholar]
  • Wu ZS, Cai YJ, Liu X, Xu CP, Chen YW, Zhang L. 2013. Temporal and spatial variability of phytoplankton in Lake Poyang: the largest freshwater lake in China. J Great Lakes Res 39: 476–483. [Google Scholar]
  • Wu ZS, He H, Cai YJ, Zhang L, Chen YW, 2014a. Spatial distribution of chlorophyll a and its relationship with the environment during summer in Lake Poyang: a Yangtze-connected lake. Hydrobiologia 732: 61–70. [Google Scholar]
  • Wu ZS, Lai XJ, Zhang L, Cai YJ, Chen YW, 2014b. Phytoplankton chlorophyll a in Lake Poyang and its tributaries during dry, mid-dry and wet seasons: a 4-year study. Knowl Manag Aquat Ecosyst 412: 1–13. [Google Scholar]
  • Wu ZS, Wang XL, Chen YW, Cai YJ, Deng JC. 2018. Assessing river water quality using water quality index in Lake Taihu Basin, China. Sci Total Environ 612: 914–922. [PubMed] [Google Scholar]
  • Wu ZS, Kong M, Cai YJ, Wang XL, Li KY. 2019. Index of biotic integrity based on phytoplankton and water quality index: do they have a similar pattern on water quality assessment? A study of rivers in Lake Taihu Basin, China. Sci Total Environ 658: 395–404. [PubMed] [Google Scholar]
  • Xiao R, Su SL, Ghadouani A, Wu JP. 2013. Spatial analysis of phytoplankton patterns in relation to environmental factors across the southern Taihu basin, China. Stoch Environ Res Risk Assess 27: 1347–1357. [Google Scholar]
  • Xu H, Paerl HW, Qin B, Zhu G, Gao G. 2010. Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu, China. Limnol Oceanogr 55: 420–432. [Google Scholar]
  • Zebek E, Szymanska U. 2017. Abundance, biomass and community structure of pond phytoplankton related to the catchment characteristics. Knowl Manag Aquat Ecosys. 9. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.