Open Access
Issue
Knowl. Manag. Aquat. Ecosyst.
Number 420, 2019
Article Number 29
Number of page(s) 17
DOI https://doi.org/10.1051/kmae/2019020
Published online 28 May 2019
  • Almeida D, Barrientos R, Merino-Aguirre R, Angeler DG. 2012. The role of prey abundance and flow regulation in the marking behaviour of Eurasian otters in a Mediterranean catchment. Anim Behav 84: 1475–1482. [CrossRef] [Google Scholar]
  • Almeida D, Rodolfo N, Sayer CD, Copp GH. 2013. Seasonal use of ponds as foraging habitat by Eurasian otter with description of an alternative handling technique for common toad predation. Folia Zool 62: 214–221. [CrossRef] [Google Scholar]
  • Araújo MS, Bolnick DI, Layman CA. 2011. The ecological causes of individual specialisation. Ecol Lett 14: 948–958. [CrossRef] [Google Scholar]
  • Arlinghaus R, Mehner T, Cowx IG. 2002. Reconciling traditional inland fisheries management and sustainability in industrialized countries, with emphasis on Europe. Fish Fish 3: 261–316. [CrossRef] [Google Scholar]
  • Armstrong JD, Kemp PS, Kennedy GJA, Ladle M, Milner NJ. 2003. Habitat requirements of Atlantic salmon and brown trout in rivers and streams. Fish Res 62: 143–170. [Google Scholar]
  • Balestrieri A, Remonti L, Vezza P, Prigioni C, Copp GH. 2013. Do non-native fish as prey favour the conservation of the threatened indigenous Eurasian otter? Freshwater Biol 58: 995–1007. [CrossRef] [Google Scholar]
  • Barrientos R, Merino-Aguirre R, Fletcher DH, Almeida D. 2014. Eurasian otters modify their trophic niche after the introduction of non-native prey in Mediterranean fresh waters. Biol Invasions 16: 1573–1579. [CrossRef] [Google Scholar]
  • Begon M, Townsend CR, Harper JL. 2006. Ecology: from individuals to ecosystems, 4th ed. Oxford: Blackwell Publishing, 750 p. [Google Scholar]
  • Beja PR. 1996. An analysis of otter Lutra lutra predation on introduced American crayfish Procambarus clarkii in Iberian streams. J Applied Ecol 33: 1156–1170. [CrossRef] [Google Scholar]
  • Blanco-Garrido F, Prenda J, Narvaez M. 2008. Eurasian otter (Lutra lutra) diet and prey selection in Mediterranean streams invaded by centrarchid fishes. Biol Invasions 10: 641–648. [CrossRef] [Google Scholar]
  • BMLFUW. 2015. Nationaler Gewässerbewirtschaftungsplan 2015. Vienna: Austrian Ministry of Agriculture, Forestry, Environment and Water Management, 358 p. [Google Scholar]
  • Britton JR, Berry M, Sewell S, Lees C, Reading P. 2017. Importance of small fishes and invasive crayfish in otter Lutra lutra diet in an English chalk stream. Knowl Manag Aquat Ecosyst 418: 13. [CrossRef] [Google Scholar]
  • Brzezinski M, Romanowski J, Kopczynski L, Kurowicka E. 2006. Habitat and seasonal variations in diet of otters, Lutra lutra in eastern Poland. Folia Zool 55: 337–348. [Google Scholar]
  • Calenge C. 2006. The package “adehabitat” for the R software: a tool for the analysis of space and habitat use by animals. Ecol Model 197: 516–519. [CrossRef] [Google Scholar]
  • Carss DN. 1995. Foraging behaviour and feeding ecology of the otter Lutra lutra: a selective review. Hystrix 7: 179–194. [Google Scholar]
  • Carss DN, Parkinson SG. 1996. Errors associated with otter Lutra lutra faecal analysis. 1: assessing general diet from spraints. J Zool (Lond) 238: 301–317. [CrossRef] [Google Scholar]
  • Carter N, Linnell J. 2016. Co-adaption is key to coexisting with large carnivores. Trends Ecol Evol 31: 575–578. [CrossRef] [PubMed] [Google Scholar]
  • CEN (European Committee for Standardization). 2003. Water quality-sampling of fish with electricity (European Standard EN 14011:2003). Brussels, Belgium: CEN. [Google Scholar]
  • Chapron G, Kaczensky P, Linnell JDC, et al. 2014. Recovery of large carnivores in Europe's modern human-dominated landscapes. Science 346: 1517–1519. [CrossRef] [Google Scholar]
  • Clavero M, Prenda J, Delibes M. 2003. Trophic diversity of the otter (Lutra lutra L.) in temperate and Mediterranean freshwater habitats. J Biogeogr 30: 761–769. [CrossRef] [Google Scholar]
  • Clavero M, Prenda J, Delibes M. 2004. Influence of spatial heterogeneity on coastal otter (Lutra lutra) prey consumption. Ann Zool Fennici 41: 551–561. [Google Scholar]
  • Conroy JWH, Watt J, Webb JB, Jones A. 2005. A guide to the identification of prey remains in otter spraint. London: The Mammal Society, 48 p. [Google Scholar]
  • Crowley S, Johnson CJ, Hodder CP. 2013. Spatio-temporal variation in river otter (Lontra canadensis) diet and latrine site activity. Ecoscience 20: 28–39. [CrossRef] [Google Scholar]
  • Cowx IG. 1991. Catch effort sampling strategies − Their application in freshwater fisheries management. Oxford: Fishing News Books, Blackwell Scientific Publications, 432 p. [Google Scholar]
  • Cowx IG. 2015. Characterisation of inland fisheries in Europe. Fisheries Manag Ecol 22: 78–87. [Google Scholar]
  • Czernik M, Kowalczyk R, Zalewski A. 2016. Spatio-temporal variation of predator diet in a rural habitat: stone martens in the villages of Bialowieza forest. Mammal Res 61: 187–196. [CrossRef] [Google Scholar]
  • Day CC, Westover MD, Mcmillan BR. 2015. Seasonal diet of the northern river otter (Lontra canadensis): what drives prey selection? Can J Zool 93: 197–205. [CrossRef] [Google Scholar]
  • De La Hey S. 2008. The importance of birds in the diet of otter Lutra lutra on Shapwick Heath. Biosci Horizons 1: 143–147. [CrossRef] [Google Scholar]
  • Erlinge S. 1968. Food studies on captive otters Lutra lutra L. Oikos 19: 259–270. [CrossRef] [Google Scholar]
  • Estes JA. 1989. Adaptions for aquatic living by carnivores. In: Gittleman JL, ed. Carnivore biology, ecology and evolution. London: Chapman and Hall, pp. 242–282. [CrossRef] [Google Scholar]
  • Estes J, Riedman ML, Staedler MM, Tinker MT, Lyon BE. 2003. Individual variation in prey selection by sea otters: patterns, causes and implications. J Anim Ecol 72: 144–155. [CrossRef] [Google Scholar]
  • Grant KR, Harrington LA. 2015. Fish selection by riverine Eurasian otters in lowland England. Mammal Res 60: 217–231. [CrossRef] [Google Scholar]
  • Hájková P, Roche K, Kocian L. 2003. On the use of diagnostic bones of brown trout, Salmo trutta m. fario, grayling, Thymallus thymallus and Carpathian sculpin, Cottus poecilopus in Eurasian otter, Lutra lutra diet analysis. Folia Zool 52: 389–398. [Google Scholar]
  • Haunschmid R, Schotzko N, Petz-Glechner R, Honsig-Erlenburg W, Schmutz S, Spindler T, Unfer G, Bammer WV, Hundritsch L, Prinz H, Sasano B. 2010. Leitfaden zur Erhebung der biologischen Qualitätselemente Teil A1–Fische. Vienna: Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, Sektion VII. [Google Scholar]
  • Heggberget TM, Moseid K-E. 1994. Prey selection in coastal Eurasian otters Lutra Iutra . Ecography 17: 331–338. [CrossRef] [Google Scholar]
  • Illies J. 1961. Versuch einer biozönotischen Gliederung der Fließgewässer. Int Revue ges Hydrobiol 46: 205–213. [CrossRef] [Google Scholar]
  • Jacobsen L, Hensen HM. 1996. Analysis of otter (Lutra lutra) spraints: Part 1: comparison of methods to estimate prey proportion; part 2: estimation of size of prey fish. J Zool (Lond) 238: 167–180. [CrossRef] [Google Scholar]
  • Klare U, Kamler JF, MacDonald DW. 2011. A comparison and critique of different scat-analysis methods for determining carnivore diet. Mamm Rev 41: 294–312. [CrossRef] [Google Scholar]
  • Klenke RA, Ring I, Kranz A, Jepsen N, Rauschmayer F, Henle K. 2013. Human-wildlife conflicts in Europe. Fisheries and fish-eating vertebrates as a model case. Berlin: Springer, 347 p. [Google Scholar]
  • Kloskowski J. 2000. Selective predation by otters Lutra lutra on common carp Cyprinus carpio at farmed fisheries. Mammalia 64: 287–294. [CrossRef] [Google Scholar]
  • Kloskowski J, Rechulicz J, Jarzynowa B. 2013. Resource availability and use by Eurasian otters Lutra lutra in a heavily modified river-canal system. Wildlife Biol 19: 439–451. [CrossRef] [Google Scholar]
  • Knollseisen M. 1996. Fischbestimmungsatlas als Grundlage für nahrungsökologische Untersuchungen, BOKU-Berichte zur Wildtierforschung und Wildbewirtschaftung 12. Wien: Universität für Bodenkultur Wien, 93 p. [Google Scholar]
  • Kortan D, Adámek Z, Vrána P. 2010. Otter, Lutra lutra, feeding pattern in the Kamenice River (Czech Republic) with newly established Atlantic salmon, Salmo salar, population. Folia Zool 59: 223–230. [CrossRef] [Google Scholar]
  • Kranz A. 2000. Otters (Lutra lutra) increasing in Central Europe: from the threat of extinction to locally perceived overpopulation? Mammalia 64: 357–368. [CrossRef] [Google Scholar]
  • Krawczyk AJ, Bogdziewicz M, Majkowska K, Glazaczow A. 2016. Diet composition of the Eurasian otter Lutra lutra in different freshwater habitats of temperate Europe: a review and meta-analysis. Mamm Rev 46: 106–113. [CrossRef] [Google Scholar]
  • Kruuk H. 2006. Otters: ecology, behaviour and conservation. Oxford: Oxford University Press, 280 p. [Google Scholar]
  • Kruuk H, Carss D, Conroy J, Durbin L. 1993. Otter (Lutra lutra L.) numbers and fish productivity in rivers in north-east Scotland. Symp Zool Soc Lond 65: 171–191. [Google Scholar]
  • Lanszki J, Körmendi S, Hancz C, Martin TG. 2001. Examination of some factors affecting selection of fish prey by otters (Lutra lutra) living by eutrophic fish ponds. J Zool 255: 97–103. [CrossRef] [Google Scholar]
  • Lanszki J, Lehoczky I, Kotze A, Somers MJ. 2016. Diet of otters (Lutra lutra) in various habitat types in the Pannonian biogeographical region compared to other regions of Europe. Peer J 4: e2266. [CrossRef] [Google Scholar]
  • Levins R. 1968. Evolution in changing environments. Princeton: Princeton University Press, 132 p. [Google Scholar]
  • Lewin W-C., Arlinghaus R, Mehner T. 2006. Documented and potential biological impacts of recreational fishing: Insights for management and conservation. Rev Fish Sci 14: 305–367. [CrossRef] [Google Scholar]
  • Lyach R, Cech M. 2017. Do otters target the same fish species and sizes as anglers? A case study from a lowland trout stream (Czech Republic). Aquat Living Resour 30: 11. [CrossRef] [Google Scholar]
  • MacArthur RH, Pianka ER. 1966. On optimal use of a patchy environment. Am Nat 100: 603–609. [CrossRef] [Google Scholar]
  • Magnhagen C. 1991. Predation risk as a cost of reproduction. Trends Ecol Evol 6: 183–186. [CrossRef] [PubMed] [Google Scholar]
  • Manly BFJ, McDonald LL, Thomas DL, McDonald TL, Erickson WP. 2002. Resource selection by animals: statistical design and analysis for field studies. 2nd ed. London: Kluwer Academic Publishers, 222 p. [Google Scholar]
  • Mason CF, MacDonald SM. 1986. Otters: ecology and conservation. Cambridge: Cambridge University Press, 248 p. [Google Scholar]
  • Michalik M, McGill RAR, van Noordwijk HJ, Masello JF, Furness RW, Eggers T, Quillfeldt P. 2013. Stable isotopes reveal variable foraging behaviour in a colony of the Imperial Shag Phalacrocorax atriceps: differences between ages, sexes and years. J Ornithol 154: 239–249. [CrossRef] [Google Scholar]
  • Nelson K, Kruuk H. 1997. The prey of otters: calorific content of eels (Anguilla anguilla) and other fish, frogs (Rana temporaria) and toads (Bufo bufo). IUCN Otter Specialist Group Bull 14: 75–80. [Google Scholar]
  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, ÓHara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H. 2018. Vegan: community ecology package. R package version 2.4-4. https://cran.r-project.org/package=vegan. [Google Scholar]
  • Pagacz S, Witczuk J. 2010. Intensive exploitation of amphibians by Eurasian Otter (Lutra lutra) in the Wolosaty Stream, Southeastern Poland. Ann Zool Fennici 47: 403–410. [CrossRef] [Google Scholar]
  • Pianka ER. 1973. The structure of lizard communities. Annu Rev Ecol Syst 4: 53–74. [CrossRef] [Google Scholar]
  • Pinter K, Lautsch E, Unfer G, Hayes DS. 2018. Snorkeling-based fish stock assessment by anglers − a valuable method for managing recreational fisheries. N Am J Fish Manage https://doi.org/10.1002/nafm.10246. [Google Scholar]
  • Pletterbauer F, Melcher AH, Ferreira T, Schmutz S. 2015. Impact of climate change on the structure of fish assemblages in European rivers. Hydrobiologia 744: 235–254. [CrossRef] [Google Scholar]
  • Pyke GH, Pulliam HR, Charnov E. 1977. Optimal foraging: a selective review of theory and tests. Q Rev Biol 52: 137–154. [CrossRef] [Google Scholar]
  • Rauschmayer F, Wittmer H, Berghöfer A. 2008. Institutional challenges for resolving conflicts between fisheries and endangered species conservation. Mar Policy 32: 178–188. [CrossRef] [Google Scholar]
  • R Core Team. 2017. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing, Austria. https://www.R-project.org/. [Google Scholar]
  • Redpath SM, Young J, Evely A, Adams WM, Sutherland WJ, Whitehouse A, Amar A, Lambert RA, Linnell JDC, Watt A, Gutiérrez RJ. 2013. Understanding and managing conservation conflicts. Trends Ecol Evol 28: 100–109. [CrossRef] [PubMed] [Google Scholar]
  • Reid N, Thompson D, Hayden B, Marnell F, Montgomery WI. 2013. Review and meta-analysis of diet suggests the Eurasian otter (Lutra lutra) is likely to be a poor bioindicator. Ecol Indic 26: 5–13. [CrossRef] [Google Scholar]
  • Remonti L, Prigioni C, Balestrieri A, Sgrosso S, Priore G. 2008. Trophic flexibility of the otter (Lutra lutra) in southern Italy. Mamm Biol 73: 293–302. [CrossRef] [Google Scholar]
  • Remonti L, Balestrieri A, Prigioni C. 2009. Altitudinal gradient of Eurasian otter (Lutra lutra) food niche in Mediterranean habitats. Can J Zool 87: 285–291. [CrossRef] [Google Scholar]
  • Remonti L, Prigioni C, Balestrieri A, Sgrosso S, Priore G. 2010. Eurasian otter (Lutra lutra) prey selection in response to a variation of fish abundance. Ital J Zool 77: 331–338. [CrossRef] [Google Scholar]
  • Ripple WJ, Estes JA, Beschta RL, et al. 2014. Status and ecological effects of the world's largest carnivores. Science 343: 1241484. [CrossRef] [Google Scholar]
  • Roos A, Loy A, de Silva P, Hajkova P, Zemanová B. 2015. Lutra lutra. The IUCN Red list of threatended species 2015: e.T12419A21935287. http://dx.doi.org/10.2305/IUCN.UK 2015-2. RLTS.T12419 A21935287. en. Downloaded on 26 June 2018. [Google Scholar]
  • Rosenblatt AE, Nifong JC, Heithaus MR, Mazzotti FJ, Cherkiss MS, Jeffery BM, Elsey RM, Decker RA, Silliman BR, Guillette LJ, Lowers RH, Larson JC. 2015. Factors affecting individual foraging specialization and temporal diet stability across the range of a large “generalist” apex predator. Oecologica 178: 5–16. [CrossRef] [Google Scholar]
  • Ruiz-Olmo J, Jiménez J. 2009. Diet diversity and breeding of top predators are determined by habitat stability and structure: a case study with the Eurasian otter (Lutra lutra L.). Eur J Wildl Res 55: 133–144. [CrossRef] [Google Scholar]
  • Ruiz-Olmo J, López-Martín JM, Palazón S. 2001. The influence of fish abundance on the otter (Lutra lutra) populations in Iberian Mediterranean habitats. J Zool 254: 325–336. [CrossRef] [Google Scholar]
  • Ruiz-Olmo J, Batet A, Manas F, Martínez-Vidal R. 2011. Factors affecting otter (Lutra lutra) abundance and breeding success in freshwater habitats of the north-eastern Iberian Peninsula. Eur J Wildl Res 57: 827–842. [CrossRef] [Google Scholar]
  • Sales-Luís T, Pedroso NM, Santos-Reis M. 2007. Prey availability and diet of the Eurasian otter (Lutra lutra) on a large reservoir and associated tributaries. Can J Zool 85: 1125–1135. [CrossRef] [Google Scholar]
  • Schinegger R, Trautwein C, Melcher A, Schmutz S. 2012. Multiple human pressures and their spatial patterns in Europen running waters. Water Environ J 26: 261–273. [CrossRef] [PubMed] [Google Scholar]
  • Schinegger R, Palt M, Segurado P, Schmutz S. 2016. Untangling the effects of multiple human stressors and their impacts on fish assemblages in European running waters. Sci Total Environ 573: 1079–1088. [CrossRef] [PubMed] [Google Scholar]
  • Sittenthaler M, Bayerl H, Unfer G, Kuehn R, Parz-Gollner R. 2015. Impact of fish stocking on Eurasian otter (Lutra lutra) densities: a case study on two salmonid streams. Mamm Biol 80: 106–113. [CrossRef] [Google Scholar]
  • Smiroldo G, Balestrieri A, Remonti L, Prigioni C. 2009. Seasonal and habitat-related variation of otter Lutra lutra diet in a Mediterranean river catchment (Italy). Folia Zool 58: 87–97. [Google Scholar]
  • Smith EAE, Newsome SD, Estes JA, Tinker MT. 2015. The cost of reproduction: differential resource specialization in female and male California sea otters. Oecologia 178: 17–29. [CrossRef] [PubMed] [Google Scholar]
  • Stendera S, Adrian R, Bonada N, Cañedo-Arguelles M, Hugueny B, Januschke K, Pletterbauer F, Hering D. 2012. Drivers and stressors of freshwater biodiversity patterns across different ecosystems and scales: a review. Hydrobiologia 696: 1–28. [CrossRef] [Google Scholar]
  • Stephens DW, Krebs JR. 1986. Foraging theory. Princeton: Princeton University Press, 262 p. [Google Scholar]
  • Stewart DC, Middlemas SJ, Gardiner WR, Mackay S, Armstrong JD. 2005. Diet and prey selection of cormorants (Phalacrocorax carbo) at Loch Leven, a major stocked trout fishery. J Zool 267: 191–201. [CrossRef] [Google Scholar]
  • Stöger E. 2016. The impact of the recent resettlement of European otter (Lutra lutra) on salmonid stocks of Lower Austrian streams − An analysis of environmental conditions and fish stock development (in German with english abstract). Vienna: Master Thesis, BOKU University of Natural Resources and Life Sciences, 122 p. [Google Scholar]
  • Svanbäck R, Bolnick DI. 2005. Intraspecific competition affects the strength of individual specialization: an optimal diet theory method. Evol Ecol Res 7: 993–1012. [Google Scholar]
  • Taastrom H, Jacobsen L. 1999. The diet of otters (Lutra lutra L.) in Danish freshwater habitats: comparisons of prey fish populations. J Zool 248: 1–13. [CrossRef] [Google Scholar]
  • Tudorache C, Viaene P, Blust R, Vereecken H, De Boeck G. 2008. A comparison of swimming capacity and energy use in seven European freshwater fish species. Ecol Freshw Fish 17: 284–291. [CrossRef] [Google Scholar]
  • Unfer G, Pinter K. 2018. Fisheries management of stream-resident brown trout populations − possibilities and restrictions. In: Lobón-Cerviá J, Sanz N, eds. Brown Trout: Biology, Ecology and Management. Hoboken, New Jersey: John Wiley & Sons, pp. 649–665. [Google Scholar]
  • Unfer G, Hauer C, Pinter K. 2011. Spawning redds of brown trout in geologically different streams. In: American Fisheries Society, ed. New frontiers in fisheries management and ecology: leading the way in a changing world. Seattle, USA: American Fisheries Society 141st Annual Meeting. [Google Scholar]
  • Van den Brink PJ, Ter Braak CJF. 1999. Principal response curves: analysis of time-dependent multivariate responses of biological community to stress. Environ Toxicol Chem 18: 138–148. [CrossRef] [Google Scholar]
  • Van den Brink PJ, Van den Brink NW, Ter Braak CJF. 2003. Multivariate analysis of ecotoxicological data using ordination: demonstrations of utility on the basis of various examples. Austral J Ecotoxicol 9: 141–156. [Google Scholar]
  • Van den Brink PJ, Den Besten PJ, Bij De Vaate A, Ter Braak CJF. 2009. Principal response curves technique for the analysis of multivariate biomonitoring time series. Environ Monit Assess 152: 271–281. [CrossRef] [PubMed] [Google Scholar]
  • Vucetich JA, Peterson RO, Schaefer CL. 2002. The effect of prey and predator densities on wolf predation. Ecology 83: 3003–3013. [CrossRef] [Google Scholar]
  • Watt J. 1993. Ontogeny of hunting behavour of otters (Lutra lutra L.) in a marine environment. Symp Zool Soc Lond 65: 87–104. [Google Scholar]
  • Webb JB. 1976. Otter spraint analysis. The Mammal Society, Reading, 12 p. [Google Scholar]
  • Weber ED, Fausch KD. 2003. Interactions between hatchery and wild salmonids in streams: differences in biology and evidence for competition. Can J Fish Aquat Sci 60: 1018–1036. [CrossRef] [Google Scholar]
  • Wise MH. 1980. The use of fish vertebrae in scats for estimating prey size of otters and mink. J Zool (Lond) 195: 181–213. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.