Issue
Knowl. Manag. Aquat. Ecosyst.
Number 419, 2018
Topical Issue on Fish Ecology
Article Number 49
Number of page(s) 13
DOI https://doi.org/10.1051/kmae/2018037
Published online 17 December 2018
  • Amat Trigo F, Gutmann Roberts C, Britton JR. 2017. Spatial variability in the growth of invasive European barbel Barbus barbus in the River Severn basin, revealed using anglers as citizen scientists. Knowl Manag Aquat Ecosyst 418: 17. [Google Scholar]
  • Amundsen P-A, Gabler H-M, Staldvik FJ. 1996. A new approach to graphical analysis of feeding strategy from stomach contents data: modification of the Costello (1990) method. J Fish Biol 48: 607–614. [Google Scholar]
  • Argillier C, Barral M, Irz P. 2012. Growth and diet of the pikeperch Sander lucioperca (L.) in two French reservoirs. Arch Pol Fish 20: 191–200. [CrossRef] [Google Scholar]
  • Arlinghaus R, Hallermann J. 2007. Effects of air exposure on mortality and growth of undersized pikeperch, Sander lucioperca, at low water temperatures with implications for catch-and-release fishing. Fish Manag Ecol 14: 155–160. [CrossRef] [Google Scholar]
  • Arlinghaus R, Alós J, Beardmore B, Daedlow K, Dorow M, Fujitani M, Hühn D, Haider W, Hunt LM, Johnson BM, Johnston F, Klefoth T, Matsumura S, Monk C, Pagel T, Post JR, Rapp T, Riepe C, Ward H, Wolter C. 2017. Understanding and managing freshwater recreational fisheries as complex adaptive social-ecological systems. Rev Fish Sci Aquac 25: 1–41. [CrossRef] [Google Scholar]
  • Arrington DA, Winemiller KO, Loftus WF, Akin S. 2002. How often do fishes “run on empty”? Ecology 83: 2145–2151. [Google Scholar]
  • Bašić T, Britton JR. 2015. Utility of fish scales from stock assessment surveys in stable isotope analysis for initial assessments of trophic relationships in riverine fish communities. J Appl Ichthyol 31: 296–300. [Google Scholar]
  • Bowen SH, Lutz EV, Ahlgren MO. 1995. Dietary protein and energy as determinants of food quality: trophic strategies compared. Ecology 76: 899–907. [Google Scholar]
  • Bower SD, Danylchuk AJ, Brownscombe JW, Thiem JD, Cooke SJ. 2016. Evaluating effects of catch-and-release angling on peacock bass (Cichla ocellaris) in a Puerto Rican reservoir: a rapid assessment approach. Fish Res 175: 95–102. [Google Scholar]
  • Brett MT, Goldman CR. 1996. A meta-analysis of the freshwater trophic cascade. Proc Natl Acad Sci USA 93: 7723–7726. [CrossRef] [Google Scholar]
  • Britton JR, Busst GM. 2018. Stable isotope discrimination factors of omnivorous fishes: influence of tissue type, temperature, diet composition and formulated feeds. Hydrobiologia 808: 219–234. [Google Scholar]
  • Britton JR, Orsi ML. 2012. Non-native fish in aquaculture and sport fishing in Brazil: economic benefits versus risks to fish diversity in the upper River Paraná Basin. Rev Fish Biol Fish 22: 555–565. [Google Scholar]
  • Britton JR, Gozlan RE, Copp GH. 2011. Managing non-native fish in the environment. Fish Fish 12: 256–274. [CrossRef] [Google Scholar]
  • Busst GMA, Britton JR. 2015. Quantifying the growth consequences for crucian carp Carassius carassius of competition from non-native fishes. Ecol Freshw Fish 24: 489–492. [Google Scholar]
  • Busst GMA, Britton JR. 2016. High variability in stable isotope diet-tissue discrimination factors of two omnivorous freshwater fishes in controlled ex situ conditions. J Exp Biol 219: 1060–1068. [CrossRef] [PubMed] [Google Scholar]
  • Busst GMA, Britton JR. 2017. Tissue-specific turnover rates of the nitrogen stable isotope as functions of time and growth in a cyprinid fish. Hydrobiologia 805: 1–12. [Google Scholar]
  • Busst GMA, Bašić T, Britton JR. 2015. Stable isotope signatures and trophic-step fractionation factors of fish tissues collected as non-lethal surrogates of dorsal muscle: non-lethal tissue surrogates for fish isotope studies. Rapid Commun Mass Spectrom 29: 1535–1544. [CrossRef] [PubMed] [Google Scholar]
  • Campbell RNB. 1992. Food of an introduced population of pikeperch, Stizostedion lucioperca L., in lake Egirdir, Turkey. Aquac Res 23: 71–85. [CrossRef] [Google Scholar]
  • Church MR, Ebersole JL, Rensmeyer KM, Couture RB, Barrows FT, Noakes DLG. 2009. Mucus: a new tissue fraction for rapid determination of fish diet switching using stable isotope analysis. Can J Fish Aquat Sci 66: 1–5. [Google Scholar]
  • Cooke SJ, Lapointe NWR, Martins EG, Thiem JD, Raby GD, Taylor MK, Beard Jr TD, Cowx IG. 2013. Failure to engage the public in issues related to inland fishes and fisheries: strategies for building public and political will to promote meaningful conservation. J Fish Biol 83: 997–1018. [PubMed] [Google Scholar]
  • Cook KV, Lennox RJ, Hinch SG, Cooke SJ. 2015. Fish out of water: how much air is too much? Fisheries 40: 452–461. [CrossRef] [Google Scholar]
  • Copp GH, Wesley KJ, Kovac V, Ives MJ, Carter MG. 2003. Introduction and establishment of the pikeperch Stizostedion lucioperca (L.) in Stanborough Lake (Hertfordshire) and its dispersal in the Thames catchment. Lond Nat 82: 139–154. [Google Scholar]
  • Cortés E. 1997. A critical review of methods of studying fish feeding based on analysis of stomach contents: application to elasmobranch fishes. Can J Fish Aquat Sci 54: 726–738. [Google Scholar]
  • Costello MJ. 1990. Predator feeding strategy and prey importance: a new graphical analysis. J Fish Biol 36: 261–263. [Google Scholar]
  • Cucherousset J, Bouletreau S, Martino A, Roussel J-M, Santoul F. 2012. Using stable isotope analyses to determine the ecological effects of non-native fishes. Fish Manag Ecol 19: 111–119. [CrossRef] [Google Scholar]
  • Densen WL van, Ligtvoet W, Roozen RW. 1996. Intra-cohort variation in the individual size of juvenile pikeperch, Stizostedion lucioperca, and perch, Perca fluviatilis, in relation to the size spectrum of their food items. Ann Zool Fenn 33: 495–506. [Google Scholar]
  • Didenko AV, Gurbyk AB. 2016. Spring diet and trophic relationships between piscivorous fishes in Kaniv Reservoir (Ukraine). Folia Zool 65: 15–26. [CrossRef] [Google Scholar]
  • Dörner H, Berg S, Jacobsen L, Hülsmann S, Brojerg M, Wagner A. 2003. The feeding behaviour of large perch Perca fluviatilis (L.) in relation to food availability: a comparative study. Hydrobiologia 506: 427–434. [Google Scholar]
  • Dörner H, Hülsmann S, Hölker F, Skov C, Wagner A. 2007. Size-dependent predator-prey relationships between pikeperch and their prey fish. Ecol Freshw Fish 16: 307–314. [Google Scholar]
  • Drenner RW, Hambright RKD. 2002. Piscivores, trophic cascades, and lake management. Sci World J 2: 284–307. [CrossRef] [Google Scholar]
  • Elmer LK, Kelly LA, Rivest S, Steell SC, Twardek WM, Danylchuk AJ, Arlinghaus R, Bennett JR, Cooke SJ. 2017. Angling into the future: ten commandments for recreational fisheries science, management, and stewardship in a good Anthropocene. Environ Manage 60: 165–175. [CrossRef] [PubMed] [Google Scholar]
  • Elvira B, Almodóvar A. 2001. Freshwater fish introductions in Spain: facts and figures at the beginning of the 21st century. J Fish Biol 59: 323–331. [Google Scholar]
  • Frankiewicz P, Dabrowski K, Martyniak A, Zalewski M. 1999. Cannibalism as a regulatory force of pikeperch, Stizostedion lucioperca (L.), population dynamics in the lowland Sulejow reservoir (Central Poland). Hydrobiologia 408–409: 47–55. [Google Scholar]
  • Fry B. 2006. Stable Isotope Ecology. New York, NY: Springer. [CrossRef] [Google Scholar]
  • Ginter K, Kangur K, Kangur A, Kangur P, Haldna M. 2011. Diet patterns and ontogenetic diet shift of pikeperch, Sander lucioperca (L.) fry in lakes Peipsi and Võrtsjärv (Estonia). Hydrobiologia 660: 79–91. [Google Scholar]
  • Gozlan RE. 2008. Introduction of non-native freshwater fish: is it all bad? Fish Fish 9: 106–115. [CrossRef] [Google Scholar]
  • Gratwicke B, Marshall BE. 2001. The relationship between the exotic predators Micropterus salmoides and Serranochromis robustus and native stream fishes in Zimbabwe. J Fish Biol 58: 68–75. [Google Scholar]
  • Hansson S, Arrhenius F, Nellbring S. 1997. Diet and growth of pikeperch (Stizostedion lucioperca L.) in a Baltic Sea area. Fish Res 31: 163–167. [Google Scholar]
  • Heady WN, Moore JW. 2013. Tissue turnover and stable isotope clocks to quantify resource shifts in anadromous rainbow trout. Oecologia 172: 21–34. [CrossRef] [PubMed] [Google Scholar]
  • Hempel M, Neukamm R, Thiel R. 2016. Effects of introduced round goby (Neogobius melanostomus) on diet composition and growth of zander (Sander lucioperca), a main predator in European brackish waters. Aquat Invasions 11: 167–178. [CrossRef] [Google Scholar]
  • Hickley P. 1986. Invasion by Zander and the Management of Fish Stocks. Philos Trans R Soc Lond B 314: 571–582. [CrossRef] [Google Scholar]
  • Hickley P, Chare S. 2004. Fisheries for non-native species in England and Wales: angling or the environment? Fish Manag Ecol 11: 203–212. [CrossRef] [EDP Sciences] [Google Scholar]
  • Hutchinson JJ, Trueman CN. 2006. Stable isotope analyses of collagen in fish scales: limitations set by scale architecture. J Fish Biol 69: 1874–1880. [Google Scholar]
  • Jensen H, Kiljunen M, Amundsen P-A. 2012. Dietary ontogeny and niche shift to piscivory in lacustrine brown trout Salmo trutta revealed by stomach content and stable isotope analyses. J Fish Biol 80: 2448–2462. [CrossRef] [PubMed] [Google Scholar]
  • Kangur A, Kangur P. 1998. Diet composition and size-related changes in the feeding of pikeperch, Stizostedion lucioperca (Percidae) and pike, Esox lucius (Esocidae) in the Lake Peipsi (Estonia). Ital J Zool 65: 255–259. [CrossRef] [Google Scholar]
  • Kangur P, Kangur A, Kangur K. 2007. Dietary importance of various prey fishes for pikeperch Sander lucioperca (L.) in large shallow lake Võrtsjärv (Estonia). Proc Estonian Acad Sci Biol Ecol 56: 154–167 [Google Scholar]
  • Keskinen T, Marjomäki TJ. 2004. Diet and prey size spectrum of pikeperch in lakes in central Finland. J Fish Biol 65: 1147–1153. [Google Scholar]
  • Kopp D, Cucherousset J, Syväranta J, Martino A, Céréghino R, Santoul F. 2009. Trophic ecology of the pikeperch (Sander lucioperca) in its introduced areas: a stable isotope approach in southwestern France. C R Biol 332: 741–746. [CrossRef] [PubMed] [Google Scholar]
  • Lappalainen J, Dörner H, Wysujack K. 2003. Reproduction biology of pikeperch (Sander lucioperca (L.)): a review. Ecol Freshw Fish 12: 95–106. [Google Scholar]
  • Lappalainen J, Olin M, Vinni M. 2006. Pikeperch cannibalism: effects of abundance, size and condition. Ann Zool Fenn , 43: 35–44. [Google Scholar]
  • Linfield RSJ, Rickards RB. 1979. The zander in perspective. Aquac Res 10: 1–16. [Google Scholar]
  • Locke SA, Bulté G, Forbes MR, Marcogliese DJ. 2013. Estimating diet in individual pumpkinseed sunfish Lepomis gibbosus using stomach contents, stable isotopes and parasites. J Fish Biol 82: 522–537. [CrossRef] [PubMed] [Google Scholar]
  • Maitland PS. 2004. Keys to the freshwater fish of Britain and Ireland, with notes on their distribution and ecology. https://doi.org/10.1111/j. 1365-2109. 2005.01267.x [Google Scholar]
  • Martínez del Rio C, Wolf N, Carleton SA, Gannes LZ. 2009. Isotopic ecology ten years after a call for more laboratory experiments. Biol Rev 84: 91–111. [CrossRef] [Google Scholar]
  • Maruyama A, Shimonaka H, Ito T. 2015. Quick change in δ15 N values of fish mucus confirmed in the field using a migratory goby. Ecol Freshw Fish 24: 162–164. [Google Scholar]
  • Maruyama A, Tanahashi E, Hirayama T, Yonekura R. 2017. A comparison of changes in stable isotope ratios in the epidermal mucus and muscle tissue of slow-growing adult catfish. Ecol Freshw Fish 26: 636–642. [Google Scholar]
  • Mehner T, Schultz H, Bauer D, Herbst R, Voigt H, Benndorf J. 1996. Intraguild predation and cannibalism in age-0 perch (Perca fluviatilis) and age-0 zander (Stizostedion lucioperca): interactions with zooplankton succession, prey fish availability and temperature. Ann Zool Fenn 33: 353–361. [Google Scholar]
  • Mittelbach GG, Persson L. 1998. The ontogeny of piscivory and its ecological consequences. Can J Fish Aquat Sci 55: 1454–1465. [Google Scholar]
  • Newsome SD, Rio CM del, Bearhop S, Phillips DL. 2007. A niche for isotopic ecology. Front Ecol Environ 5: 429–436. [Google Scholar]
  • Pace ML, Cole JJ, Carpenter SR, Kitchell JF. 1999. Trophic cascades revealed in diverse ecosystems. Trends Ecol Evol 14: 483–488. [CrossRef] [PubMed] [Google Scholar]
  • Paradis Y, Bertolo A, Magnan P. 2008. What do the empty stomachs of northern pike (Esox lucius) reveal? Insights from carbon (δ13C) and nitrogen (δ15N) stable isotopes. Environ Biol Fishes 83: 441–448. [Google Scholar]
  • Parnell AC, Phillips DL, Bearhop S, Semmens BX, Ward EJ, Moore JW, Jackson AL, Grey J, Kelly DJ, Inger R. 2013. Bayesian stable isotope mixing models. Environmetrics 24: 387–399. [Google Scholar]
  • Pelicice FM, Agostinho AA. 2009. Fish fauna destruction after the introduction of a non-native predator (Cichla kelberi) in a Neotropical reservoir. Biol Invasions 11: 1789–1801. [Google Scholar]
  • Pérez-Bote JL, Roso R. 2012. Growth and length-weight relationships of Sander lucioperca (Linnaeus, 1758) in the Alcántara Reservoir, south-western Spain: comparison with other water bodies in Eurasia. J Appl Ichthyol 28: 264–268. [Google Scholar]
  • Persson A, Brönmark C. 2002. Foraging capacity and resource synchronization in an ontogenetic diet switcher, pikeperch (Stizostedion lucioperca). Ecology 83: 3014–3022. [Google Scholar]
  • Persson A, Brönmark C. 2008. Pikeperch Sander lucioperca trapped between niches: foraging performance and prey selection in a piscivore on a planktivore diet. J Fish Biol 73: 793–808. [Google Scholar]
  • Phillips DL, Inger R, Bearhop S, Jackson AL, Moore JW, Parnell AC, Semmens BX, Ward EJ. 2014. Best practices for use of stable isotope mixing models in food-web studies. Can J Zool 92: 823–835. [Google Scholar]
  • Pinnegar JK, Polunin NVC. 1999. Differential fractionation of δ13C and δ15N among fish tissues: implications for the study of trophic interactions. Funct Ecol 13: 225–231. [Google Scholar]
  • Post DM. 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83: 703–718. [Google Scholar]
  • Post DM, Layman CA, Arrington DA, Takimoto G, Quattrochi J, Montana CG. 2007. Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152: 179–189. [CrossRef] [PubMed] [Google Scholar]
  • R Core Team. 2018. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ [Google Scholar]
  • Sandlund OT, Museth J, Øistad S. 2016. Migration, growth patterns, and diet of pike (Esox lucius) in a river reservoir and its inflowing river. Fish Res 173: 53–60. [Google Scholar]
  • Sato T, Watanabe K. 2014. Do stage-specific functional responses of consumers dampen the effects of subsidies on trophic cascades in streams? J Anim Ecol 83: 907–915. [CrossRef] [PubMed] [Google Scholar]
  • Schulze T, Baade U, Dörner H, Eckmann R, Haertel-Borer SS, Hölker F, Mehner T. 2006. Response of the residential piscivorous fish community to introduction of a new predator type in a mesotrophic lake. Can J Fish Aquat Sci 63: 2202–2212. [Google Scholar]
  • Schulze T, Dörner H, Baade U, Hölker F. 2012. Dietary niche partitioning in a piscivorous fish guild in response to stocking of an additional competitor: the role of diet specialisation. Limnol Ecol Manag Inland Waters 42: 56–64. [CrossRef] [Google Scholar]
  • Shigeta K, Tsuma S, Yonekura R, Kakamu H, Maruyama A. 2017. Isotopic analysis of epidermal mucus in freshwater fishes can reveal short-time diet variations. Ecol Res 32: 643–652. [Google Scholar]
  • Siepker MJ, Ostrand KG, Cooke SJ, Philipp DP, Wahl DH. 2007. A review of the effects of catch-and-release angling on black bass, Micropterus spp.: implications for conservation and management of populations. Fish Manag Ecol 14: 91–101. [CrossRef] [Google Scholar]
  • Sinnatamby RN, Bowman JE, Dempson JB, Power M. 2007. An assessment of de-calcification procedures for δ13C and δ15N analysis of yellow perch, walleye and Atlantic salmon scales. J Fish Biol 70: 1630–1635. [Google Scholar]
  • Smith PA, Leah RT, Eaton JW. 1997 Removal as an option for management of an introduced piscivorous fish: the zander . In: Roberts J, Tilzey RDJ, eds. Controlling carp: exploring the options for Australia. Griffith, NSW: CSIRO Land and Water, pp. 74–86. [Google Scholar]
  • Stock B, Semmens BX. 2016. MixSIAR GUI User Manual, Version 3 . 1. [Google Scholar]
  • Stock BC, Jackson AL, Ward EJ, Parnell AC, Phillips DL, Semmens BX. 2018. Analyzing mixing systems using a new generation of Bayesian tracer mixing models. Peer J Prepr 6: e5096. [CrossRef] [Google Scholar]
  • Tronquart NH, Mazeas L, Reuilly-Manenti L, Zahm A, Belliard J. 2012. Fish fins as non-lethal surrogates for muscle tissues in freshwater food web studies using stable isotopes. Rapid Commun Mass Spectrom 26: 1603–1608. [CrossRef] [PubMed] [Google Scholar]
  • Turesson H, Persson A, Brönmark C. 2002. Prey size selection in piscivorous pikeperch (Stizostedion lucioperca) includes active prey choice. Ecol Freshw Fish 11: 223–233. [Google Scholar]
  • Vašek M, Vejřík L, Vejříková I, Šmejkal M, Baran R, Muška M, Kubečka J, Peterka J. 2017. Development of non-lethal monitor ing of stable isotopes in asp (Leuciscus aspius): a comparison of muscle, fin and scale tissues. Hydrobiologia 785: 327–335. [Google Scholar]
  • Ventura M, Jeppesen E. 2010. Evaluating the need for acid treatment prior to δ13C and δ15N analysis of freshwater fish scales: effects of varying scale mineral content, lake productivity and CO2 concentration. Hydrobiologia 644: 245–259. [Google Scholar]
  • Wheeler A, Maitland PS. 1973. The scarcer freshwater fishes of the British Isles. J Fish Biol 5: 49–68. [Google Scholar]
  • Woodcock SH, Walther BD. 2014. Trace elements and stable isotopes in Atlantic tarpon scales reveal movements across estuarine gradients. Fish Res 153: 9–17. [Google Scholar]
  • Woodward G, Hildrew AG. 2002. Food web structure in riverine landscapes. Freshw Biol 47: 777–798. [Google Scholar]
  • Zhao T, Villéger S, Lek S, Cucherousset J. 2014. High intraspecific variability in the functional niche of a predator is associated with ontogenetic shift and individual specialization. Ecol Evol 4: 4649–4657. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.