Open Access
Knowl. Manag. Aquat. Ecosyst.
Number 419, 2018
Article Number 46
Number of page(s) 10
Published online 03 December 2018
  • Carlson RE. 1977. A trophic state index for lakes. Limnol Oceanogr 22: 361–369. [Google Scholar]
  • de Haan HR, de Boer T. 1986. Geochemical aspects of aqueous iron, phosphorus and dissolved organic carbon in the humic Lake Tjeukemeer, The Netherlands. Freshw Biol 16: 661–672. [Google Scholar]
  • de Haan HR, Jones RI, Salonen K. 1990. Abiotic transformations of iron and phosphates in humic lake water, revealed by double isotope labelling and gel filtration. Limnol Oceanogr 35: 491–497. [Google Scholar]
  • EC, Parliament and Council 2000. Directive of the European Parliament and of the Council 2000/60/EC. [Google Scholar]
  • Feld ChK, Birk S, Eme D, Gerisch M, Hering D, Kernan M. Mailehte K, Mischkef U, Otte I, Pletterbauerg F, Poikaneh S, Salgadod J, Sayerd CD, van Wicheleni J, Malard F. 2016. Disentangling the effects of land use and geo-climatic factors on diversity in European freshwater ecosystems. Ecol Indic 60: 71–83. [Google Scholar]
  • Fijałkowski D. 1959. Plant associations of lakes situated between Łęczna and Włodawa and of peat-bogs adjacent to these lakes. Annales UMCS Sectio B 14: 131–204. [Google Scholar]
  • Granéli W. 2012. Brownification of Lakes. In Bengtsson L, Herschy R, Fairbridge R, eds. Encyclopedia of Lakes and Resevoirs, Berlin: Springer, pp. 117–119. [Google Scholar]
  • Hermanowicz W, Dojlido J, Dożańska W, Koziorowski B, Zerbe J. 1999. Fizyczno-chemiczne badanie wody i ścieków, Wyd. Arkady, Warszawa, 556 p. [Google Scholar]
  • Hessen DO, Andersen T, Larsen S, Skjelkvåle BL, de Wit HA. 2009. Nitrogen deposition, catchment productivity, and climate as determinants of lake stoichiometry. Limnol Oceanogr 54: 2520–2528. [Google Scholar]
  • Hillebrand H, Dürselen CD, Kirschtel D, Pollingher U, Zohary T. 1999. Biovolume calculation for pelagic and benthic microalgae. J Phycol 35: 403–424. [Google Scholar]
  • Hongve DG, Riise G, Kristiansen JF. 2004. Increased colour and organic acid concentrations in Norwegian forest lakes and drinking water: a result of increased precipitation? Aquat Sci 66: 231–238. [Google Scholar]
  • Huang J, Zhan J, Yan H, Wu F, Deng X. 2013. Evaluation of the impacts of land use on water quality: A case study in the Chaohu Lake Basin. Sci World J 2013: 329187. [Google Scholar]
  • Hutorowicz A, Pasztaleniec A. 2014. Phytoplankton metric of ecological status assessment for Polish lakes and its performance along nutrient gradients. Pol J Ecol 62: 525–542. [CrossRef] [Google Scholar]
  • Irfanullah HM. 2009. On the role of forested catchment in acid lake limnology. Turk J Fish Aquat Sci 9: 227–230. [Google Scholar]
  • Irfanullah HM, Moss B. 2005. Comparative limnology of waters in a coniferous forest: is a generalisation possible? Freshw Forum 24: 59–81. [Google Scholar]
  • Jansson M, Blomqvist P, Jonsson A, Bergstöm AK. 1996. Nutrient limitation of bacterioplankton, autotrophic and mixotrophic phytoplankton, and heterotrophic nanoflagellates in Lake Örträsket. Limnol Oceanogr 41: 1552–1559. [Google Scholar]
  • Jansson M. 1998. Nutrient limitation and bacteria: phytoplankton interactions in humic lakes. In Hessen DO, Tranvik LJ, eds. Aquatic Humic Substances, Ecological Studies 133, Berlin: Springer, pp. 177–195. [CrossRef] [Google Scholar]
  • Johnes PJ. 1999. Understanding lake and catchment history as a tool for integrated lake management. In Harper DM, Brierley B, Ferguson AJD, Phillips G, eds. The ecological bases for lake and reservoir management. Hydrobiologia 395/396: 41–60. [CrossRef] [Google Scholar]
  • Jones RI. 1998. Phytoplankton, primary production and nutrient cycling. In Hessen DO, Tranvik LJ, eds. Aquatic Humic Substances, Ecological Studies 133, Berlin: Springer, pp. 145–176. [CrossRef] [Google Scholar]
  • Klimaszyk P, Rzymski P, Piotrowicz R, Joniak T. 2015. Contribution of surface runoff from forested areas to the chemistry of a through-flow lake. Environ Earth Sci 73: 3963–3973. [Google Scholar]
  • Kolada A, Soszka H, Cydzik D, Gołub M. 2005. Abiotic typology of Polish lakes. Limnologica 35: 145–150. [Google Scholar]
  • Kolada A, Soszka H, Kutyła S, Pasztaleniec A. 2017. The typology of Polish lakes after a decade of its use: a critical review and verification. Limnologica 67: 20–26. [Google Scholar]
  • Kondracki J. 2002. Geografia regionalna Polski, Wydawnictwo Naukowe PWN, Warszawa, 441 p. [Google Scholar]
  • Kratzer CR, Brezonik PL. 1981. A Carlson-type trophic state index for nitrogen in Florida lakes. Water Resour Bull 17: 713–715. [Google Scholar]
  • Lean D. 1998. Attenuation of solar radiation in humic waters. In Hessen DO, Tranvik LJ, eds. Aquatic Humic Substances, Ecology and Biogeochemistry, Berlin: Springer, pp. 109–124. [CrossRef] [Google Scholar]
  • Leenheer JA, Croué JP. 2003. Characterizing aquatic dissolved organic matter. Environ Sci Technol 37: 18–26. [Google Scholar]
  • Lenard T. 2009. Metalimnetic bloom of Planktothrix rubescens in relation to environmental conditions. Oceanol Hydrobiol Stud 38: 45–53. [Google Scholar]
  • Lenard T, Ejankowski W. 2017. Natural water brownification as a shift in the phytoplankton community in a deep hard water lake. Hydrobiologia 787: 153–166. [Google Scholar]
  • Lürling M, De Senerpont Domis LN. 2013. Predictability of plankton communities in an unpredictable world. Freshw Biol 58: 455–462. [Google Scholar]
  • Mathes J, Plambeck G, Schaumburg J. 2002. Das Typisierungssystem für stehende Gewässer in Deutschland mit Wasserflächen ab 0.5 km2 zur Umsetzung der Wasserrahmenrichtlinie. In Deneke R, Nixdorf B, eds. Implementierung der EU-Wasserrahmenrichtlinie in Deutschland: Ausgewählte Bewertungsmethoden und Defizite, Aktuelle Reihe BTU Cottbus 5/2002, pp. 15–24. [Google Scholar]
  • Michalczyk Z, Chmiel S, Turczyński M. 2011. Lake water stage dynamics in the Łęczna-Włodawa Lake District in 1991-2010. Limnol Rev 11: 113–122. [CrossRef] [Google Scholar]
  • Mischke U, Riedmüller U, Hoehn E, Schönfelder I, Nixdorf B. 2008. Description of the German system for phytoplankton-based assessment of lakes for implementation of the EU Water Framework Directive (WFD). In Mischke U, Nixdorf B, eds. Gewässerreport 10, Aktuelle Reihe 2/2008, University Cottbus, pp. 117–146. [Google Scholar]
  • Nicolle A, Hallgren P, von Einem J, Kritzberg ES, Granéli W, Persson A, Brönmark Ch, Hansson L-A. 2012. Predicted warming and browning affect timing and magnitude of plankton phenological events in lakes: a mesocosm study. Freshw Biol 57: 684–695. [Google Scholar]
  • Nõges T, Nõges P, Laugaste R. 2003a. Water level as the mediator between climate change and phytoplankton composition in a large shallow temperate lake. Hydrobiologia 506-509: 257–263. [Google Scholar]
  • Nõges P, Nõges T, Tuvikene L, Smal H, Ligęza S, Kornijów R, Peczuła W, Bécares E, Garcia-Criado F, Alvarez-Carrera C, Fernández-Alaéz C, Ferriol C, Miracle MR., Vicente E, Romo S, van Donk E, van de Bund W, Jensen J-P, Gross EM, Hansson L-A, Gyllström M, Nykänen M., de Eyto E, Irvine K, Stephen D, Collings SE, Moss B. 2003b. Factors controlling hydrochemical and trophic state variables in 86 shallow lakes in Europe. Hydrobiologia 506–509: 51–58. [Google Scholar]
  • Nürnberg GK, Shaw M. 1999. Productivity of clear and humic lakes: nutrients, phytoplankton, bacteria. Hydrobiologia 382: 97–112. [Google Scholar]
  • Nush EA. 1980. Comparison of different methods for chlorophyll and phaeopigment determination. Arch Hydrobiol 14: 14–36. [Google Scholar]
  • Nygaard G. 1949. Hydrobiological studies on some Danish ponds and lakes II. The quotient hypothesis on some new or little known phytoplankton organisms. Det Kongelige Danske Videnskabernes Selskab 7, 293 p. [Google Scholar]
  • Ott I, Laugaste R. 1996. Fütoplanktoni koondindeks (FKI), üldistus Eesti järvede kohta. Eesti Keskkonnaministeeriumi infoleht 3: 7–8. [Google Scholar]
  • Ott I, Kõiv T, Nõges P, Kisand A, Järvalt A, Kirt E. 2005. General description of partly meromictic hypertrophic Lake Verevi, its ecological status, changes during the past eight decades and restoration problems. In: Ott I, Kõiv T, Eds. Lake Verevi, Estonia − a highly stratified hypertrophic lake. Hydrobiologia 547: 1–20. [Google Scholar]
  • Pace ML, Cole JJ. 2002. Synchronous variation of dissolved organic carbon and color in lakes. Limnol Oceanogr 47: 333–342. [Google Scholar]
  • Pagenkopf, GK, Whitworth, C. 1981. Precipitation of metal-humate complexes. J Inorg Nucl Chem, 43: 1219–1222. [CrossRef] [Google Scholar]
  • Pålsson C, Granéli W. 2004. Nutrient limitation of autotrophic and mixotrophic phytoplankton in a temperate and tropical humic lake gradient. J Plankton Res 26: 1005–1014. [Google Scholar]
  • Pasztaleniec A. 2016. Phytoplankton in the ecological status assessment of European lakes − advantages and constraints. Environ Prot Nat Resour 27, 1: 26–36. [Google Scholar]
  • Phillips G, Free G, Karottki I, Laplace-Treyture Ch, Maileht K, Mischke U, Ott I., Pasztaleniec A, Portielje R, Søndergaard M, Trodd W, Van Wichelen J. 2014. Water Framework Directive Intercalibration Technical Report, Northern Lake Phytoplankton Ecological Assessment Methods, European Commission, Joint Research Centre, Luxembourg: Publications Office of the European Union, 186 p. [Google Scholar]
  • Pielou EC. 1966. The measurement of diversity in different types of biological collections. J Theor Biol 13: 131–144. [Google Scholar]
  • Schindler DW. 1971. A hypothesis to explain differences and similarities among lakes in the experimental lakes area, Northwestern Ontario. J Fish Res Board Can 28: 295–301. [CrossRef] [Google Scholar]
  • Sepp M, Kõiv T, Nõges P, Nõges T. 2018. Do organic matter metrics included in lake surveillance monitoring in Europe provide a broad picture of brownification and enrichment with oxygen consuming substances? Sci Total Environ 610-611: 1288–1297. [Google Scholar]
  • Sokal RR, Rohlf FJ. 1995. Biometry: The Principles and Practice of Statistics in Biological Research, New York: W.H. Freeman and Company, 887 p. [Google Scholar]
  • Søndergaard M, Jensen JP, Jeppesen E. 1999. Internal phosphorus loading in shallow Danish lakes. Hydrobiologia 408/409: 154–152. [Google Scholar]
  • Sugier P. 2008. Characteristics of Lake Rogóźno macrophytes and their role in preservation of biodiversity. TEKA Commission of Protection and Formation of Natural Environment the Lublin Branch of PAN 5: 138–144. [Google Scholar]
  • Szyper H, Gołdyn R. 2002. Role of catchment area in the transport of nutrients to lakes in the Wielkopolska National Park in Poland. Lakes Reservoirs Res Manage 7: 25–33. [CrossRef] [Google Scholar]
  • Utermöhl H. 1958. Zur Vervolkommnung der quantitativen Planktonmethodik. Mitteilung. Int Vereinigung Theor Amgew Limnol 9: 1–38. [Google Scholar]
  • Vasiljev J. 1998. The simulated response of lakes to changes in annual and seasonal precipitation: implication for Holocene lake-level changes in northern Europe. Clim Dyn 14: 791–801. [Google Scholar]
  • Weyhenmeyer GA, Müller RA, Norman M, Tranvik TJ. 2016. Sensitivity of freshwaters to browning in response to future climate change. Clim Change 134: 225–239. [Google Scholar]
  • Yong STY, Chen W. 2002. Modelling the relationship between land use and surface water quality. J Environ Manage 66: 377–393. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.